Comparison of Milling Techniques to Figure of Merit of 0.98PZT-0.02BYF Piezoelectric Ceramic Energy Harvester

2016 ◽  
Vol 690 ◽  
pp. 218-223
Author(s):  
Piyalak Ngernchuklin ◽  
Arjin Boonruang ◽  
Saengdoen Daungdaw ◽  
Nestchanok Yongpraderm

Nowadays, the concept of harvesting energy from the environment, for example, thermal, wind, sun, vibration and human activities is much of interest. PZT is one of the materials which show an ability to harness vibration energy and then change to electrical energy. Therefore, the PZT (Pb(Zr0.53Ti0.47)O3) doped with 0.02 mol% BYF (Bi(Y0.7Fe0.3)O3) piezoelectric ceramics has been studied to improve the figure of merit (d33*g33). The PZT and BYF powder systems were prepared by solid state reaction with calcination temperature of 800 and 850 °C for 2 h, respectively. XRD results showed that both powders exhibited pure perovskite phase for PZT and single phase of BYF without pyrochlore phase. Then, the two calcined powders (PZT and BYF) were mixed according to the composition of 0.02 mol% BYF doped PZT by two different milling techniques called conventional ball-milling (CBM) and high energy ball-milling (HBM) for 10 h. The result showed that average particle size obtain from HBM was 1 µm which was smaller than from CBM shown up to a few microns in bimodal mode. The PZT-BYF-HBM ceramics showed higher physical and electrical properties but lower K value. Thus promoting to higher g33 which was equal to 36.89 * 10-3(Vm/N) and FOM was 11,632*10-15(m2/N), while PZT-BYF-CBM had g33 of 26.86* 10-3(Vm/N) and FOM at 8,016*10-15(m2/N), respectively.

2014 ◽  
Vol 802 ◽  
pp. 51-55 ◽  
Author(s):  
Claudinei dos Santos ◽  
Alexandre Fernandes Habibe ◽  
Durval Rodrigues ◽  
José C. Minatti ◽  
Jefferson Fabrício C. Lins ◽  
...  

In this work, the microstructural features of the particles based on 66% Co-28% Cr-6% Mo alloy, were investigated by X-ray diffraction and Scanning electron microscopy (SEM). Powders obtained by high-energy ball milling in an inert atmosphere, and held in SPEX mill with times between 15min and 120min, about ball/powder ratio of 6:1, were characterized by X-ray diffraction indicating in all conditions, Co phase as the crystalline phase of the system. The powders have a morphology that indicate a continuous reduction in average particle size as a function of increasing time, however, the shape of the particles initially flat for times up to 30 minutes, becomes spherodized after 30 minutes of grinding.


2012 ◽  
Vol 476-478 ◽  
pp. 1214-1217 ◽  
Author(s):  
Chong Cai Zhang ◽  
Quan Wang ◽  
Qun Qun Yuan ◽  
Long Wang

In this paper, the WC-16TiC-xTaC-10Co mixture mixed by WC 0.52μm, (W, Ti, Ta)C 2.9μm and Co1.36μm and prepared by high-energy ball milling, changed the VC and Cr3C2 adding amount. After ball milling for 60 hours, an average particle size of 220nm powder was prepared and it was cold isostatic pressed at 300MPa and vacuum sintered at 1410°C. The physical properties and the micrographs of samples were detected. The main conclusions are as follow: the coercivity and hardness increase and Cobalt magnetic decreases with the content of Cr3C2 increasing, the transverse rupture strength (TRS) does not vary. The VC and Cr3C2 inhibit the growth of WC grain, but can’t inhibite the (W, Ti, Ta)C grain growth effectively.


2016 ◽  
Vol 66 (4) ◽  
pp. 360 ◽  
Author(s):  
Ajeet Kumar ◽  
V.V. Bhanu Prasad ◽  
K.C. James Raju ◽  
Rajdeep Sarkar ◽  
P. Ghosal ◽  
...  

Different compositions of (Pb1-xLax) (Zr0.60Ti0.40)O3 (abbreviated as PLZT x/60/40; x=0, 0.07, 0.08 and 0.10) ceramics were prepared by a combinatorial approach by high energy mechano-chemical ball milling and cold isostatic pressing (CIP). X-ray diffraction patterns and transmission as well as scanning electron microscope were used for the micro-structural and morphological studies. The average particle size of PLZT milled powders was measured from the TEM images and was found to be in the nm range.XRD patterns of the sintered PLZT x/60/40 ceramics confirm the perovskite phase formation after heat treatment. SEM of sintered PLZT x/60/40 ceramics show a close packed dense structure. PLZT 8/60/40 ceramics show the fine grains (~1.3 µm) with density ~97 per cent. Dielectric constant and loss were measured as a function of temperature. PLZT 8/60/40 ceramics shows the highest value of room temperature dielectric constant ~2480 at 1 kHz. Ferroelectric studies were done with the help of polarisation (P-E) and strain (S-E) vs. electric field measurements. PLZT 8/60/40 ceramics shows the maximum value of remnant polarisation (~36 µC/cm2) and strain (~0.27 per cent), respectively. PLZT x/60/40 ceramic samples were poled at optimized poling conditions. The measured values of piezoelectric charge coefficient (d33) and electromechanical coupling factor (kp) of PLZT 8/60/40 ceramics were found to be, ~690 pC/N and ~71 per cent, respectively.


2008 ◽  
Vol 55-57 ◽  
pp. 185-188
Author(s):  
Theerachai Bongkarn ◽  
C. Wicheanrat

This study concentrated on the crystal structure and microstructure of [(Ba0.75Sr0.25)TiO3; (BST)] ceramics at different firing temperatures. The BST powders were prepared by a combustion method. (CO(NH2)2) was used as a fuel. Crystallinity of the calcined powders was improved by increasing the calcining temperature, as indicated by the increase in intensity of the X-ray diffraction peak. The pure perovskite phase of BST powders was obtained with a calcinations condition of 1200 oC. The a axis lattice constant of BST calcined powders and sintered ceramics were calculated and it was found that the crystal structure is a cubic phase. The microstructure of BST calcined powders and sintered ceramics were analyzed by a scanning electron microscope (SEM). The SEM result indicated that the average particle size and average grain size increased with the increase of calcinations and sintering temperatures, respectively. The apparent density of the samples was measured by the Archimedes method.


2013 ◽  
Vol 284-287 ◽  
pp. 168-172 ◽  
Author(s):  
Chii Ruey Lin ◽  
Da Hua Wei ◽  
Minh Khoa Ben Dao ◽  
Ren Jei Chung ◽  
Ming Hong Chang

In this present work, nanodiamond (ND) particles were successfully prepared from commercial micron diamond powder at room temperature by high energy ball milling process using an oscillatory mill (SPEX8000). The size reduction and structural evolutions of the milled samples were investigated as a function of the milling time by means of X-ray diffraction, and field emission scanning electron microscopy. The line broadening technique was used to determine the crystallite size and lattice strain. After 40 h of milling, obtained ND particles possessed uniform shape and 25 nm of average particle size. Also, energy dispersive X-ray results revealed the high purity of ND and demonstrated that the purification process using harsh acid mixture were effective to remove metal and non-diamond carbon impurities produced in milling stage. All results propose a scalable method to preparation ND particles as well as nanocrystalline materials.


2012 ◽  
Vol 512-515 ◽  
pp. 723-728
Author(s):  
Qi Long Guo ◽  
Jun Guo Li ◽  
Qiang Shen ◽  
Lian Meng Zhang

The sinterability of ZrB2-20vol.% SiC ceramics by high-energy ball milling as well as introduction of Zr and Al as sintering additives. Densification process and microstructure of ZrB2-SiC ceramics were investigated. After high-energy ball milling, the average particle size decreased to about 500 nm-2 μm, and ZrB2-SiC powder can be sintered to 98.92% theoretical density at 1800 °C, but a trace of amount of oxidation (ZrO2) were detected in sintered sample. Introduction of Zr, Al and C combined with high-energy ball milling enhanced the densification of ZrB2-SiC ceramics and reduced the particle sizes, and the relative density of obtained ceramic reached up to 99.49% at 1800 °C. The additions of Zr, Al and C can remove the oxide impurities of the surface of ZrB2 particles and form a reaction between oxide impurities. The fracture toughness increased of the 40% when ZrB2 powders were milled by high-energy ball milling, and increased to 4.77±0.18 MPa•m1/2. However, the attrition-milled composites had lower hardness and Young’s modulus, which was attributed to the presence of a second phase in the grain boundaries.


2020 ◽  
Vol 9 (1) ◽  
pp. 386-398 ◽  
Author(s):  
Mahmood S. Jameel ◽  
Azlan Abdul Aziz ◽  
Mohammed Ali Dheyab

AbstractPlatinum nanoparticles (Pt NPs) have attracted interest in catalysis and biomedical applications due to their unique structural, optical, and catalytic properties. However, the conventional synthesis of Pt NPs using the chemical and physical methods is constrained by the use of harmful and costly chemicals, intricate preparation requirement, and high energy utilization. Hence, this review emphasizes on the green synthesis of Pt NPs using plant extracts as an alternative approach due to its simplicity, convenience, inexpensiveness, easy scalability, low energy requirement, environmental friendliness, and minimum usage of hazardous materials and maximized efficiency of the synthesis process. The underlying complex processes that cover the green synthesis (biosynthesis) of Pt NPs were reviewed. This review affirms the effects of different critical parameters (pH, reaction temperature, reaction time, and biomass dosage) on the size and shape of the synthesized Pt NPs. For instance, the average particle size of Pt NPs was reported to decrease with increasing pH, reaction temperature, and concentration of plant extract.


2016 ◽  
Vol 869 ◽  
pp. 277-282
Author(s):  
Moisés Luiz Parucker ◽  
César Edil da Costa ◽  
Viviane Lilian Soethe

Solid lubricants have had good acceptance when used in problem areas where the conventional lubricants cannot be applied: under extreme temperatures, high charges and in chemically reactive environments. In case of materials manufactured by powder metallurgy, particles of solid lubricants powders can be easily incorporated to the matrix volume at the mixing stage. In operation, this kind of material provides a thin layer of lubricant that prevents direct contact between the surfaces. The present study aimed at incorporating particles of second phase lubricant (h-BN) into a matrix of nickel by high-energy ball milling in order to obtain a self-lubricating composite with homogeneous phase distribution of lubricant in the matrix. Mixtures with 10 vol.% of h-BN varying the milling time of 5, 10, 15 and 20 hours and their relationship ball/powder of 20:1 were performed. The effect of milling time on the morphology and microstructure of the powders was studied by X-ray diffraction, SEM and EDS. The composite powders showed reduction in average particle size with increasing milling time and the milling higher than 5 hours resulted in equiaxial particles and the formation of nickel boride.


2011 ◽  
Vol 474-476 ◽  
pp. 1711-1714 ◽  
Author(s):  
Panadda Sittiketkron ◽  
Arrak Klinbumrung ◽  
Theerachai Bongkarn

This study investigated the influence of excess Bi2O3 and Na2CO3 on the crystal structure, microstructure and dielectric properties of (Bi0.5Na0.5)TiO3 (BNT) ceramics. The BNT ceramics were synthesized using the solid-state reaction method with various excess Bi2O3 and Na2CO3 levels (0, 1, 2, 3 and 4 mol%). The X-ray characterization revealed that all samples had a rhombohedral structure. A pure perovskite phase was obtained in all samples. The lattice parameter a tended to increase with increased excess Bi2O3 and Na2CO3 content in the calcined powders and sintered ceramics. The average particle size increased while, the average grain size tended to decreased with increased of excess Bi2O3 and Na2CO3 content. The depolarization temperature (Td) and the Curie temperature (Tc) were slightly decreased with the increase of excess Bi2O3 and Na2CO3 content. The dielectric properties were related to the density.


2007 ◽  
Vol 124-126 ◽  
pp. 799-802
Author(s):  
Tak Hyoung Lim ◽  
Gil Yong Lee ◽  
Dong Hyun Peck ◽  
Rak Hyun Song ◽  
Dong Ryul Shin

The characteristics of La0.8Sr0.05Ca0.15CrO3 interconnect material synthesized by modified pechini method, USP, and GNP was investigated. The powder synthesized by Pechini method exhibited somewhat aggregated shape. The precursor synthesized by USP had spherical shape and their particle size decreased somewhat after calcining procedure at 1000oC. In the case of GNP, the precursor formed agglomerated particles. The average particle size of powders synthesized by Pechini method, USP, and GNP were 0.4+m, 0.6+m, and below 10nm, respectively. The La0.8Sr0.05Ca0.15CrO3 powder had a single perovskite phase and orthorhombic structure. After sintering at 1400oC and 1500oC, the relative density of samples synthesized by pechini method was approximately 95% and that of samples synthesized by USP was slightly small. However, that of the samples synthesized by GNP was approximately 92%.


Sign in / Sign up

Export Citation Format

Share Document