Composition, Structure and Electrical Resistivity of ZnO1-x Films Deposited by RF Magnetron Sputtering under Various O2/Ar Gas Ratios

2016 ◽  
Vol 697 ◽  
pp. 723-726 ◽  
Author(s):  
Yang Wang ◽  
Zhi Jian Peng ◽  
Qi Wang ◽  
Xiu Li Fu

ZnO1-x thin films were deposited by RF magnetron sputtering on conducting silicon wafers at room temperature with ZnOn (n≤1) target under an atmosphere of O2/Ar ratio varying from 0 to 2.0. The correlation between composition, structure and electrical resistivity of the obtained films was investigated. X-ray diffraction analysis revealed that the prepared würtzite ZnO1-x films had c-axis preferential growth orientation. When the O2/Ar ratio was lower than 0.5, the main form of defects in the films was oxygen vacancy; when it was 0.5, the composition of the film approached to the stoichiometric ZnO and had the least number of defects; after that, the main type of defects in the films was interstitial zinc. Thus, with increasing O2/Ar ratio, the electrical resistivity of the films increased first and then decreased.

2014 ◽  
Vol 602-603 ◽  
pp. 1039-1042 ◽  
Author(s):  
Hai Xia Su ◽  
Zhi Jian Peng ◽  
Xiu Li Fu

TiOx thin films were deposited by RF magnetron sputtering with TiOx (x<2) target at varied substrate temperatures. The composition and microstructure of the films was characterized by grazing incidence X-ray diffraction, scanning electron microscopy and Raman spectroscopy, which revealed that the films deposited at low temperatures were amorphous, and as the temperature increased up to 600 °C, the prepared films became crystalline and a TiO2 anatase phase was identified. Also the electrical resistivity of the as-prepared TiOx films was investigated as a function of the deposition temperature. The result indicates that with the raise of substrate temperature, the electrical resistivity of the deposited films decreased sharply.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2014 ◽  
Vol 998-999 ◽  
pp. 120-123
Author(s):  
Jun Du ◽  
Xiao Ying Zhu ◽  
Yan Zang ◽  
Lei Guo

sp2 rich carbon films were produced by using magnetron sputtering deposition. The hardness, friction coefficient and wear volume were elevated by Knoop micro-hardness and pin-on-disk tester; The composition and microstructure of the carbon films have been characterized in detail by combining the techniques of Rutherford Backscattering Spectrum (RBS), X-Ray Photoelectron Spectrum (XPS) and X-Ray Diffraction (XRD); the electrical resistivity was measured by Four Probe Methods (FPM). It is found that: the films hardness are 11~17GPa (HK0.05), the friction coefficients are 0.1-0.2, the wear rate is 10-15m3/Nm; The maximum intensity position in the C1s indicates the chemical bonds are mainly sp2; the electrical resistivity is 1~2×10-4Ω·m. XRD proves these carbon films are amorphous.


2019 ◽  
Vol 372 ◽  
pp. 442-450 ◽  
Author(s):  
I. Cosme ◽  
S. Vázquez-y-Parraguirre ◽  
O. Malik ◽  
S. Mansurova ◽  
N. Carlos ◽  
...  

2011 ◽  
Vol 418-420 ◽  
pp. 293-296
Author(s):  
Qiu Yun Fu ◽  
Peng Cheng Yi ◽  
Dong Xiang Zhou ◽  
Wei Luo ◽  
Jian Feng Deng

Abstract. In this article, nano-ZnO films were deposited on SiO2/Si (100) substrates by RF (radio frequency) magnetron sputtering using high purity (99.99%) ZnO target. The effects of deposition time and annealing temperature have been investigated. XRD (X-ray diffraction) and FSEM (Field Emission Scanning Electron Microscopy) were employed to characterize the quality of the films. The results show that the ZnO film with thickness of 600nm annealed at 900°C has higher quality of both C-axis orientation and crystallization. And for the Zone film with thickness of 300nm annealed at 850°C, the quality of both C-axis orientation and crystallization is higher than that annealed at 900°C and 950°C.


2009 ◽  
Vol 79-82 ◽  
pp. 931-934 ◽  
Author(s):  
Liang Tang Zhang ◽  
Jie Song ◽  
Quan Feng Dong ◽  
Sun Tao Wu

The polycrystalline V2O5 films as the anode in V2O5 /LiPON /LiCoO2 lithium microbattary were prepared by RF magnetron sputtering system. The V2O5 films’ crystal structures, surface morphologies and composition were characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The microbatteries were fabricated by micro electro-mechanical system (MEMS) technology. The battery active unit area is 500μm×500μm, and the thickness of V2O5, LiPON and LiCoO2 films was estimated to be 200, 610, and 220nm, respectively. The discharge volumetric capacity is between 9.36μAhcm-2μm-1 and 9.63μAhcm-2μm-1 after 40 cycles.


2013 ◽  
Vol 302 ◽  
pp. 146-150
Author(s):  
L.L. Li ◽  
Qiu Xiang Liu ◽  
Yan Zou ◽  
Xin Gui Tang ◽  
Yan Ping Jiang

Bi0.9Nd0.1FeO3 (BNFO) films were deposited on Si (100) and (La,Sr)(Al,Ta)O3 (100) (LAST) substrate by radio frequency (RF) magnetron sputtering method respectively. The structure,morphology and magnetic properties were studied. X-ray diffraction (XRD) result indicates that the BNFO films on different substrate adopted different orientation. Cross-section scanning electron microscopy shows that the film thickness is 145 nm.Magnetic properties measurement shows that the film on Si(100) substrate has the larger saturation magnetization (Ms) of 3 686 emu/cm3, while the Ms value of the BNFO films on LSAT(100) substrate is only 1 213 emu/cm3.


2008 ◽  
Vol 396-398 ◽  
pp. 369-372 ◽  
Author(s):  
Alexandre Mello ◽  
Elena Mavropoulos ◽  
Zhen Hong ◽  
J.B. Ketterson ◽  
Antonella M. Rossi

Hydroxyapatite (HAP) crystalline thin-coatings have been grown using a right angle RF magnetron sputtering approach at room temperature. The surface structural information of these biocompatible coatings at nanometer scales was obtained by glancing-incidence X-ray diffraction (GIXRD) with synchrotron radiation. The GIXRD spectra were obtained by fixed incidence theta angles at 0.5 and 1 degree. Structural profile analyses were performed over these nano-coating layers with reduced substrate interference. The coating thickness was calibrated by specular X-ray reflectivity (XRR) curves. Experiments have been performed on thin-coatings of HAP sputtered on silicon wafers and acid etched titanium discs at room temperature. GIXRD analysis has shown that all the principal peaks are attributed to a crystalline HAP. Previous tests of biocompatibility with osteoblasts cells have been encouraging studies on the surface of hydroxyapatite thin coatings prepared by opposing RF magnetron sputtering approach, as a promising candidate for bioimplant materials.


2013 ◽  
Vol 320 ◽  
pp. 35-39
Author(s):  
Cheng Long Kang ◽  
Jin Xiang Deng ◽  
Min Cui ◽  
Chao Man ◽  
Le Kong ◽  
...  

The Al2O3-doped ZnO(AZO) films were deposited on the glasses by means of RF magnetron sputtering technology. The films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Profile-system respectively. The effect of substrate temperature on the structure of the AZO films is investigated.As a result, the properties of the AZO thin films are remarkably influenced by the substrate temperature , especially in the range of 200°C to 500 °C. The film prepared at the substrate temperature of 400°C possesses the best crystalline.


2012 ◽  
Vol 465 ◽  
pp. 155-159
Author(s):  
Feng Xiang Wang ◽  
Jun He Qi ◽  
Fei Lu ◽  
Xi Feng Qin ◽  
Zhao Hong Liu ◽  
...  

ZnO waveguide films were fabricated on sapphire (001) and MgO (100) substrates by the radiofrequency (RF) magnetron sputtering technology using ZnO ceramic as the target. Properties of the films were investigated by prism coupling method, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). The results demonstrated that the ZnO nano-films have planar waveguide structure and have nearly stoichiometric composition with c-axis preferred orientation growth. The growth rates of the films were slightly influenced by the substrates. The effective refractive indices of the films were smaller than the bulk material and were affected by substrates. The relationships between the average grain sizes, substrates, and film thickness were analyzed.


Sign in / Sign up

Export Citation Format

Share Document