Properties of Nano-ZnO Films Deposited by RF Magnetron Sputtering for SAW Biosensors

2011 ◽  
Vol 418-420 ◽  
pp. 293-296
Author(s):  
Qiu Yun Fu ◽  
Peng Cheng Yi ◽  
Dong Xiang Zhou ◽  
Wei Luo ◽  
Jian Feng Deng

Abstract. In this article, nano-ZnO films were deposited on SiO2/Si (100) substrates by RF (radio frequency) magnetron sputtering using high purity (99.99%) ZnO target. The effects of deposition time and annealing temperature have been investigated. XRD (X-ray diffraction) and FSEM (Field Emission Scanning Electron Microscopy) were employed to characterize the quality of the films. The results show that the ZnO film with thickness of 600nm annealed at 900°C has higher quality of both C-axis orientation and crystallization. And for the Zone film with thickness of 300nm annealed at 850°C, the quality of both C-axis orientation and crystallization is higher than that annealed at 900°C and 950°C.

2011 ◽  
Vol 239-242 ◽  
pp. 777-780
Author(s):  
Ting Zhi Liu ◽  
Shu Wang Duo ◽  
C Y Hu ◽  
C B Li

ZnO films were deposited on nanostructured Al (n-Al) /glass substrate by RF magnetron sputtering. The results shows that the relation (I (002) /I (100) ≈ I annealed (002)/I annealed (100) ≈1.1) shows the rough n-Al surface is suitable for the growth of a-axis orientation. Meanwhile, the influences of substrate roughness, crystallinity and (101) plane of ZnO film deposited on n-Al layer have been discussed. XPS implies more oxygen atoms are bound to Aluminum atoms, which result in the increase of high metallic Zn in the film.


2013 ◽  
Vol 307 ◽  
pp. 333-336
Author(s):  
Shiuh Chuan Her ◽  
Tsung Chi Chi

Zinc oxide (ZnO) thin films were deposited on glass substrate by Radio frequency (RF) magnetron sputtering. The effect of substrate temperature on the microstructure of the ZnO films has been investigated. Crystal structure and surface morphology of the films were examined by X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD patterns and AFM images show that the crystallinity and grain size are increasing with the increase of substrate temperature.


2010 ◽  
Vol 663-665 ◽  
pp. 215-218
Author(s):  
Shuang Li ◽  
Feng Xiang Wang ◽  
Gang Fu ◽  
Yan Ju Ji ◽  
Jun Qing Zhao

ZnO thin films with a strong c-axis orientation have been successfully deposited on quartz glass substrates at room temperature by radio frequency (rf) magnetron sputtering technology. X-ray diffraction, Rutherford backscattering, and prism coupling method were used to investigate the structure and optical properties of ZnO thin films. X-ray diffraction results shown lower sputtering pressure is propitious to increasing the crystallinity, and enhancing the c-axis orientation of the films. Rutherford backscattering analysis revealed that the films were stoichiometric ZnO, and as the sputtering pressure decreasing, the deposition rate were increased from 0.758 3nm/min to 2.892 nm min for sputtering pressure in the range from 1.0Pa to 0.5Pa. Under the lower sputtering pressure (0.5Pa) condition, the results obtained by prism coupling method investigation confirmed that the effective refractive index of ZnO films (no=1.8456,ne=1.8276) at a wavelength of 633nm is more close to Crystal Refractive index.


2013 ◽  
Vol 1494 ◽  
pp. 77-82
Author(s):  
T. N. Oder ◽  
A. Smith ◽  
M. Freeman ◽  
M. McMaster ◽  
B. Cai ◽  
...  

ABSTRACTThin films of ZnO co-doped with lithium and phosphorus were deposited on sapphire substrates by RF magnetron sputtering. The films were sequentially deposited from ultra pure ZnO and Li3PO4 solid targets. Post deposition annealing was carried using a rapid thermal processor in O2 and N2 at temperatures ranging from 500 °C to 1000 °C for 3 min. Analyses performed using low temperature photoluminescence spectroscopy measurements reveal luminescence peaks at 3.359, 3.306, 3.245 eV for the co-doped samples. The x-ray diffraction 2θ-scans for all the films showed a single peak at about 34.4° with full width at half maximum of about 0.17°. Hall Effect measurements revealed conductivities that change from p-type to n-type over time.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2019 ◽  
Vol 372 ◽  
pp. 442-450 ◽  
Author(s):  
I. Cosme ◽  
S. Vázquez-y-Parraguirre ◽  
O. Malik ◽  
S. Mansurova ◽  
N. Carlos ◽  
...  

2011 ◽  
Vol 493-494 ◽  
pp. 473-476
Author(s):  
E.O. Lopez ◽  
F.F. Borghi ◽  
Alexandre Mello ◽  
J. Gomes ◽  
Antonella M. Rossi

In this present work, we characterize HAp thin films deposited by dual magnetron sputtering device DMS on silicon (Si/HAp). The sputtering RF power was varied from 90 watts to 120 watts and deposition times from 60 to 180 minutes. The argon and oxygen pressure were fixed at 5.0 mTorr and 1.0 mTorr, respectively. Grazing incidence X-ray diffraction (GIXRD) from synchrotron radiation, infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the structural characterization. At lower deposition times, a crystalline phase with preferential orientation along apatite (002) and a disordered nanocrystalline phase were identified. The coating crystallinity was improved with the increase of the deposition time besides the sputtering power.


2013 ◽  
Vol 669 ◽  
pp. 181-184
Author(s):  
Nan Ding ◽  
Li Ming Xu ◽  
Bao Jia Wu ◽  
Guang Rui Gu

Zinc oxide (ZnO) films were prepared on Si substrates and then aluminum nitride (AlN) films were deposited on ZnO films by radio frequency (RF) magnetron sputtering. The crystal orientation, crystallite structure and surface morphology of AlN/ZnO films were characterized by X-ray diffraction (XRD), Raman spectrum and scanning electron microscopy (SEM). It was indicated that the AlN films were closely deposited on the ZnO film and had good crystallinity. Moreover, about 1μm-sized crystal particles with high c-axial orientation distributed uniformly on the AlN/ZnO film surface. It was indicated that ZnO could be a promising candidate as buffer layer for preparation of AlN thin films.


2018 ◽  
Vol 941 ◽  
pp. 2093-2098
Author(s):  
Naho Itagaki ◽  
Kazuto Takeuchi ◽  
Nanoka Miyahara ◽  
Kouki Imoto ◽  
Hyun Woong Seo ◽  
...  

We studied effects of sputtering pressure on growth of (ZnO)x(InN)1-xcrystal films deposited at 450°C by rf magnetron sputtering. Epitaxial growth of (ZnO)x(InN)1-xfilms was realized on single-crystalline ZnO template. X-ray diffraction measurements show that full width at half maximum of the rocking curves from the (101) plane of the films reaches minimum value of 0.11º at 0.5 Pa. The sputtering gas pressure is a key tuning knob for controlling the crystal quality of ZION films.


2009 ◽  
Vol 79-82 ◽  
pp. 931-934 ◽  
Author(s):  
Liang Tang Zhang ◽  
Jie Song ◽  
Quan Feng Dong ◽  
Sun Tao Wu

The polycrystalline V2O5 films as the anode in V2O5 /LiPON /LiCoO2 lithium microbattary were prepared by RF magnetron sputtering system. The V2O5 films’ crystal structures, surface morphologies and composition were characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The microbatteries were fabricated by micro electro-mechanical system (MEMS) technology. The battery active unit area is 500μm×500μm, and the thickness of V2O5, LiPON and LiCoO2 films was estimated to be 200, 610, and 220nm, respectively. The discharge volumetric capacity is between 9.36μAhcm-2μm-1 and 9.63μAhcm-2μm-1 after 40 cycles.


Sign in / Sign up

Export Citation Format

Share Document