Application of V2O5 in Thin Film Microbatteries Prepared by RF Magnetron Sputtering

2009 ◽  
Vol 79-82 ◽  
pp. 931-934 ◽  
Author(s):  
Liang Tang Zhang ◽  
Jie Song ◽  
Quan Feng Dong ◽  
Sun Tao Wu

The polycrystalline V2O5 films as the anode in V2O5 /LiPON /LiCoO2 lithium microbattary were prepared by RF magnetron sputtering system. The V2O5 films’ crystal structures, surface morphologies and composition were characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The microbatteries were fabricated by micro electro-mechanical system (MEMS) technology. The battery active unit area is 500μm×500μm, and the thickness of V2O5, LiPON and LiCoO2 films was estimated to be 200, 610, and 220nm, respectively. The discharge volumetric capacity is between 9.36μAhcm-2μm-1 and 9.63μAhcm-2μm-1 after 40 cycles.

2019 ◽  
Vol 33 (15) ◽  
pp. 1950152 ◽  
Author(s):  
Jing Wu ◽  
Xiaofeng Zhao ◽  
Chunpeng Ai ◽  
Zhipeng Yu ◽  
Dianzhong Wen

To research the piezoresistive properties of SiC thin films, a testing structure consisting of a cantilever beam, SiC thin films piezoresistors and a Cr/Pt electrode is proposed in this paper. The chips of testing structure were fabricated by micro-electro-mechanical system (MEMS) technology on a silicon wafer with [Formula: see text]100[Formula: see text] orientation, in which SiC thin films were deposited by using radio-frequency (13.56 MHz) magnetron sputtering method. The effect of sputtering power, annealing temperature and time on the microstructure and morphology of the SiC thin films were investigated by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). It indicates that a good continuity and uniform particles on the SiC thin film surface can be achieved at sputtering power of 160 W after annealing. To verify the existence of Si–C bonds in the thin films, X-ray photoelectron spectroscopy (XPS) was used. Meanwhile, the piezoresistive properties of SiC thin films piezoresistors were measured using the proposed cantilever beam. The test result shows that it is possible to achieve a gauge factor of 35.1.


2018 ◽  
Vol 142 ◽  
pp. 03008 ◽  
Author(s):  
Mei-lin Huang ◽  
Sheng-guo Lu ◽  
Wen-qin Du

Fluorocarbon (FC) films were prepared on polyethylene terephthalate (PET) plates and PET fabrics respectively by a radiofrequency (RF) magnetron sputtering technique using polytetrafluoroethylene (PTFE) as a target. Scanning electron microscope and X-ray photoelectron spectroscopy were used to investigate the morphology, structure and composition of the obtained FC films. The hydrophobicity and uvioresistant properties of the FC film coated fabric were studied. The results show that the FC films were successfully deposited on the PET substrates by a RF magnetron sputtering. The deposited films are made up of four components -CF3, -CF2-, CF- and -C-. The proportions of the four components and surface morphologies of the deposited films vary with the sputtering conditions. Compared with the original fabric samples, the hydrophobicity of the FC film coated fabrics is quite good and improved significantly.


2012 ◽  
Vol 1439 ◽  
pp. 17-23
Author(s):  
Feng Shi ◽  
Chengshan Xue

AbstractGaN nanowires and nanorods have been successfully synthesized on Si (111) substrates by magnetron sputtering through ammoniating Ga2O3/Nb thin films and the effects of ammoniation temperatures on growth of GaN nanowires and nanorods were analyzed in detail. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were carried out to characterize microstructures, morphologies, and optical properties of GaN samples. The results demonstrate that sample after ammoniation at 950 °C is single crystal GaN with hexagonal wurtzite structure and high crystalline quality, having the size of 30 - 80 nm in diameter. After ammoniation at 1000 °C, GaN nanorods appear with smooth and clean surface and more than 100 nm in diameter. The optical properties of GaN nanowires grown at 950 °C and nanorods grown at 1000 °C are best with strong emission intensities.


2013 ◽  
Vol 543 ◽  
pp. 277-280
Author(s):  
Marius Dobromir ◽  
Alina Vasilica Manole ◽  
Simina Rebegea ◽  
Radu Apetrei ◽  
Maria Neagu ◽  
...  

Rutile N-doped TiO2thin films were grown by RF magnetron sputtering on amorphous and crystalline substrates at room temperature. The surface elemental analysis, investigated by X-ray photoelectron spectroscopy indicated that the nitrogen content of the films could be adjusted up to values as high as 4.1 at.%. As demonstrated by the X-ray diffraction data, the as-deposited films (100 200 nm thick) showed no detectable crystalline structure, while after successive annealing in air for one hour at 400°C, 500°C and 600°C, the (110) rutile peaks occurred gradually as dominant features. The rutile phase in the films was confirmed by the band gap values of the deposited materials, which stabilized at 3.1 eV, for the thin films having 200 nm thicknesses.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 373
Author(s):  
Wen-Yen Lin ◽  
Feng-Tsun Chien ◽  
Hsien-Chin Chiu ◽  
Jinn-Kong Sheu ◽  
Kuang-Po Hsueh

Zirconium-doped MgxZn1−xO (Zr-doped MZO) mixed-oxide films were investigated, and the temperature sensitivity of their electric and optical properties was characterized. Zr-doped MZO films were deposited through radio-frequency magnetron sputtering using a 4-inch ZnO/MgO/ZrO2 (75/20/5 wt%) target. Hall measurement, X-ray diffraction (XRD), transmittance, and X-ray photoelectron spectroscopy (XPS) data were obtained. The lowest sheet resistance, highest mobility, and highest concentration were 1.30 × 103 Ω/sq, 4.46 cm2/Vs, and 7.28 × 1019 cm−3, respectively. The XRD spectra of the as-grown and annealed Zr-doped MZO films contained MgxZn1−xO(002) and ZrO2(200) coupled with Mg(OH)2(101) at 34.49°, 34.88°, and 38.017°, respectively. The intensity of the XRD peak near 34.88° decreased with temperature because the films that segregated Zr4+ from ZrO2(200) increased. The absorption edges of the films were at approximately 348 nm under 80% transmittance because of the Mg content. XPS revealed that the amount of Zr4+ increased with the annealing temperature. Zr is a potentially promising double donor, providing up to two extra free electrons per ion when used in place of Zn2+.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 735
Author(s):  
Pedro Berastegui ◽  
Lars Riekehr ◽  
Ulf Jansson

A ternary Cr2AlB2 phase was deposited as a film using magnetron sputtering. Its anisotropic structure displays both structural and chemical similarities with the nanolaminated MAX phases (Mn+1AXn (n = 1–3) where M usually is an early transition metal, A is typically an element in group 13–14 and X is C or N), and can be described as CrB slabs separated by layers of Al. Combinatorial sputtering was used to optimise the sputtering process parameters for films with the Cr2AlB2 composition. The influences of substrate, temperature and composition were studied using X-ray diffraction, X-ray photoelectron spectroscopy and electron microscopy. Films deposited at room temperature were X-ray amorphous but crystalline films could be deposited on MgO substrates at 680 °C using a composite Al-B, Cr and Al targets. X-ray diffraction analyses showed that the phase composition and texture of the films was strongly dependent on the chemical composition. Films with several phases or with a single Cr2AlB2 phase could be deposited, but an additional Al target was required to compensate for a loss of Al at the high deposition temperatures used in this study. The microstructure evolution during film growth was strongly dependent on composition, with a change in texture in Al-rich films from a preferred [010] orientation to a [100]/[001] orientation. A model based on Al desorption from the surface of the growing grains is proposed to explain the texture variations.


2019 ◽  
Vol 372 ◽  
pp. 442-450 ◽  
Author(s):  
I. Cosme ◽  
S. Vázquez-y-Parraguirre ◽  
O. Malik ◽  
S. Mansurova ◽  
N. Carlos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document