Study of Titanium Metal Matrix Composites Reinforced by Boron Carbides and Amorphous Boron Particles Produced via Direct Hot Pressing

2016 ◽  
Vol 704 ◽  
pp. 85-93 ◽  
Author(s):  
Isabel Montealegre-Meléndez ◽  
Erich Neubauer ◽  
Cristina Arévalo ◽  
Ana Rovira ◽  
Michael Kitzmantel

Nowadays, the demands for materials with high strength based on a titanium matrix are increasing. The manufacturing of titanium composites through low cost and near-net-shape techniques is a challenge for the industry. There are different processing routes to meet these requirements of the market. As it is well known fast powder metallurgical densification techniques could satisfy these needs. In the present work, several titanium metal matrix composites (TiMMCs) have been fabricated by using a fast hot consolidation technique, namely direct hot pressing (dHP) in order to reduce the manufacturing time. Through a pressure assisted sintering with direct heating of a pressing die the consolidated composites can be formed directly from powders in a short period of time (15 min). The matrix materials were selected from two titanium grade 1 powders and as reinforcement materials boron carbide and boron amorphous particles were employed. Varying the reinforcement’s content in addition to their particle size, their influence on the composites behaviour was expected. Furthermore in this research work, the mechanical and microstructural characterisation of the specimens was carried out in order to identify the best combination of process parameters, material reinforcement and matrix powders.Nowadays, the demands for materials with high strength based on a titanium matrix are increasing. The manufacturing of titanium composites through low cost and near-net-shape techniques is a challenge for the industry. There are different processing routes to meet these requirements of the market. As it is well known fast powder metallurgical densification techniques could satisfy these needs. In the present work, several titanium metal matrix composites (TiMMCs) have been fabricated by using a fast hot consolidation technique, namely direct hot pressing (dHP) in order to reduce the manufacturing time. Through a pressure assisted sintering with direct heating of a pressing die the consolidated composites can be formed directly from powders in a short period of time (15 min). The matrix materials were selected from two titanium grade 1 powders and as reinforcement materials boron carbide and boron amorphous particles were employed. Varying the reinforcement’s content in addition to their particle size, their influence on the composites behaviour was expected. Furthermore in this research work, the mechanical and microstructural characterisation of the specimens was carried out in order to identify the best combination of process parameters, material reinforcement and matrix powders.

2006 ◽  
Vol 530-531 ◽  
pp. 293-297 ◽  
Author(s):  
Ricardo Arthur Sanguinetti Ferreira ◽  
Yogendra Prasad Yadava ◽  
C. Arvieu ◽  
J.M. Quenisset

Continuous Binder-Powder Coating (CBPC) is a new fabrication route for the titanium metal matrix composites reinforced with continuous SiC filaments. Based on powder-cloth process, this alternative fabrication route is characterised, analysed and application viability is discussed considering the other related routes. In addition, effects of the pressure and temperature on the Ti/SiC/C composites were considered for matrix consolidation. Results have shown that the titanium matrix composites processed by Continuous Binder-Powder Coating present, simultaneously, good matrix densification, consolidation and also a weak interaction between matrix and fibers, when the hot pressing is performed under 150 MPa at temperature below β-transus. Most important characteristics of the CBPC process and its application viability are reported, in this paper.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2092971
Author(s):  
Ying Ba ◽  
Shu Sun

Fiber-reinforced metal matrix composites have mechanical properties highly dependent on directions, possessing high strength and fatigue resistance in fiber longitudinal direction achieved by weak interface bonding. However, the disadvantage of weak interface combination is the reduction of transversal performances. In this article, tensile and fatigue properties of carbon fiber-reinforced 5056 aluminum alloy matrix (Cf/5056Al) composite under the condition of medium-strength interface combination are carried out. The fatigue damage mechanisms of Cf/5056Al composite under tension–tension and tension–compression loads are not the same, but the fatigue life curves are close, which may be the result of the medium-strength interface combination.


2009 ◽  
Vol 52 (4) ◽  
pp. 322-328 ◽  
Author(s):  
I. Montealegre-Melendez ◽  
E. Neubauer ◽  
H. Danninger

2018 ◽  
Vol 56 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Mudasar B. A. Pasha ◽  
Mohammed Kaleemulla

Abstract An increased interest is observed in recent years in the processing of aluminum metal matrix composites (AMMCs) due to their remarkable properties such as light in weight, very high strength, environmental resistance, corrosion resistance, and low thermal coefficient of expansion compared to conventional metal and alloys. This leads to superior compressive strength, for fuel cell applications, low density and low cost for automotive and small engine applications. Homogeneous distribution of the reinforcement phase in turns improves hardness and ultimate tensile strength for lightweight applications, especially aeronautical and high-speed train industries. Uniform distribution of reinforcement directly influences properties and quality of the composite material. And develop a conventional low-cost method of producing metal matrix composites to obtain a homogenous dispersion of reinforcing materials. In this review article, processing and characterization of aluminum metal matrix composites have been reviewed. The Point of convergence is given to the new fabrication techniques, their physical and mechanical characterization. Substantially this review article censoriously reviews the present and past state of understanding of the processing of aluminum metal matrix composites with different reinforcement. The resulting failure mechanisms are discussed. Instructions are given to clarify open questions related to the fabrications of aluminum metal matrix composites.


Sign in / Sign up

Export Citation Format

Share Document