Flexible Interdigital In-Plane Supercapacitor Based on Laser Reduced Graphene Oxide (LRGO)

2016 ◽  
Vol 705 ◽  
pp. 138-144 ◽  
Author(s):  
Engy Ghoniem ◽  
Ahmed A. El-Moneim

We Demonstrated and Verified the Use Of laser Reduced Graphene Oxide (LRGO) Supported on Polyethylene Terephthalate (PET) Substrate for Flexible Supercapacitor Applications. we Compared the Interdigitated in-Plan Structure with the Conventionally Stacked Structure Supercapacitor. To understand the Role of Increasing the Number of Sub-Electrodes per Unit Area, Three electrode Architecture of 2, 4, and 6 Sub-Electrodes were Studied. Polymeric Gel electrolyte of Poly (vinyl Alcohol) and Phosphoric Acid (PVA-H3PO4)was Selected for the Realization of the Cells. the Interdigital in – Planesupercapacitor with 6 Sub-Electrodes I-PS(6) Showed a Volumetric Capacitance Of9.3 Fcm-3 Opposed to 3.6, 0.6, 0.5 Fcm-3 for I-PS(4), I-PS(2), and conventional Structure Supercapacitor, Respectively at 0.1 Ma Cm-2 Current Density. the Maximum Stated Energy Density of 0.409 Mwh.cm-3and Power Density of 994.6 W.cm-3 were for I-PS(6). our Results clearly Showed that the LRGO can Hold much Promise for Low-Cost, Easy, and Scalablesupercapacitor Fabrication.

2019 ◽  
Vol 43 (35) ◽  
pp. 14084-14092 ◽  
Author(s):  
Linlin Cui ◽  
Chen Cheng ◽  
Feng Peng ◽  
Yupeng Yang ◽  
Yue Li ◽  
...  

MnO2 nanoparticles were successfully synthesized on a reduced graphene oxide/lignin-based porous carbon (RGO/PC) composite film by a simple electrodeposition method, and a ternary RGO/PC/MnO2 composite electrode for flexible supercapacitors was prepared.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Beom-Gon Cho ◽  
Shalik Ram Joshi ◽  
Seongjin Lee ◽  
Shin-Kwan Kim ◽  
Young-Bin Park ◽  
...  

Functionalized graphene–polymer nanocomposites have gained significant attention for their enhanced mechanical, thermal, and antibacterial properties, but the requirement of multi-step processes or hazardous reducing agents to functionalize graphene limits their current applications. Here, we present a single-step synthesis of thermally reduced graphene oxide (TrGO) based on shellac, which is a low-cost biopolymer that can be employed to produce poly(vinyl alcohol) (PVA)/TrGO nanocomposites (PVA–TrGO). The concentration of TrGO varied from 0.1 to 2.0 wt.%, and the critical concentration of homogeneous TrGO dispersion was observed to be 1.5 wt.%, below which strong interfacial molecular interactions between the TrGO and the PVA matrix resulted in improved thermal and mechanical properties. At 1.5 wt.% filler loading, the tensile strength and modulus of the PVA–TrGO nanocomposite were increased by 98.7% and 97.4%, respectively, while the storage modulus was increased by 69%. Furthermore, the nanocomposite was 96% more effective in preventing bacterial colonization relative to the neat PVA matrix. The present findings indicate that TrGO can be considered a promising material for potential applications in biomedical devices.


2020 ◽  
Vol 44 (4) ◽  
pp. 1418-1425
Author(s):  
Swagatika Kamila ◽  
Manikandan Kandasamy ◽  
Brahmananda Chakraborty ◽  
Bikash Kumar Jena

Iodine on graphene frameworks enhances the specific capacitance towards supercapacitor applications.


2021 ◽  
Vol 717 (1) ◽  
pp. 60-71
Author(s):  
M. A. Hodlevska ◽  
R. I. Zapukhlyak ◽  
V. M. Boychuk ◽  
V. O. Kotsyubynsky ◽  
A. I. Kachmar ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


Sign in / Sign up

Export Citation Format

Share Document