Effect of the Ratio of Co to Ni+Co on the Microstructures and Mechanical Properties of Ti(C, N)-Based Cermets

2017 ◽  
Vol 726 ◽  
pp. 292-296 ◽  
Author(s):  
Peng Wu ◽  
Shao Cun Liu ◽  
Xiu Rong Jiang

The microstructures of the prepared Ti(C, N)-based cermets with various ratios of Co to Ni+Co were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Mechanical properties such as transverse rupture strength (TRS), fracture toughness (K1C) and hardness (HRA) were also measured. The results showed that when Ni was partly replaced by Co, the core size of hard particle and the thickness of rim phase changed. With the increasing of the ratio of Co to Ni+Co, the porosity of the cermets increased gradually, the fracture toughness of the cermets decreased gradually, the transverse rupture strength increased firstly and then decreased, the hardness changed slightly。When the ratio of Co to Ni+Co was 0.2, the cermets had better transverse rupture strength (TRS), which was characterized by fine grains and the moderate thickness of rim phase in the binder.

2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 86
Author(s):  
Assia Aboubakar Mahamat ◽  
Numfor Linda Bih ◽  
Olugbenga Ayeni ◽  
Peter Azikiwe Onwualu ◽  
Holmer Savastano ◽  
...  

This paper explores the effects of cement stabilization (5, 10, 15 and 20 wt%) on the structural and mechanical properties (compressive/flexural strengths and fracture toughness) of abandoned termite mound soil. The crystal structures and crystallinity of the constituents were determined using X-ray diffraction (XRD), while the microstructure was characterized via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The functional groups were also identified using Fourier transform infra-red spectroscopy (FTIR). The compressive/flexural strengths of the stabilized and un-stabilized termite mound soil were also studied after curing for 7, 14 and 28 days. The fracture toughness mechanism was analyzed with the aid of the R-curve method. Additionally, the underlying deformation and cracking mechanisms are elucidated via in-situ/ex-situ optical and scanning electron microscopy. The stabilized termite mound soil displayed the highest mechanical properties of 13.91 MPa, 10.25 MPa and 3.52 kPa·m1/2 for compressive strength, flexural strength and fracture toughness, respectively. Besides displaying good mechanical properties and being locally available at no cost, renewable and an eco-friendly material, the termite mound soil will contribute to lowering the cost of housing in Sub-Saharan Africa, particularly in Chad.


2013 ◽  
Vol 745-746 ◽  
pp. 652-656
Author(s):  
Yang Miao ◽  
Wen Liu ◽  
Lei Zhuang ◽  
Hui Ling Cheng ◽  
Qing Sen Meng

In this paper, Mechanical alloying (MA) and field activated and pressure assisted synthesis (FAPAS) were used for preparing the ultra-hard, super-abrasive AlMgB14-xTiB2 composite ceramic. The samples were fabricated at 1500 under a pressure of 60 MPa. The microstructures and compositions of samples were observed and determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD). It was indicated that addition of TiB2 was effective for increasing both quantities. A maximum Vichers hardness of 38.5GPa and a fracture toughness of 3.85MPam½ of AlMgB14 reinforced with 70 wt.% of TiB2 were achieved. Abrasion wear tests showed that adding TiB2 would improve the wearability obviously.


The effects of substitution of Fe in the boron-rich Fe–B–C alloys, containing 10.0–14.0 % B; 0.1–1.2 % C; Fe – the remainder, 5.0 % Ti, Al, or Si (in wt. %) have been studied with optical microscopy, X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy. Mechanical properties, such as microhardness and fracture toughness, have been measured by Vickers indenter. The microstructure of the master Fe–B–C alloys cooled at 10 and 103 K/s consists of primary dendrites of Fe(B,C) solid solution and Fe2(B,C) crystals. It has been found that titanium has the lowest solubility in the constituent phases of the Fe–B–C alloys, with preferential solubility observed in the Fe(B,C) dendrites, where Ti occupies Fe positions. This element has been shown to be mainly present in secondary phases identified as TiC precipitates at the Fe2(B,C) boundaries. Titanium slightly enhances microhardness and lowers fracture toughness of the boron-rich Fe–B–C alloys due to substitutional strengthening of Fe(B,C) dendrites and precipitation of the secondary phases. The level of the content of Al or Si in the Fe(B,C) and Fe2(B,C) solid solutions and quantity of the secondary phases observed in the structure suggest that more Al or Si are left in the constituent phases as compared with Ti. These elements mainly enter the crystal lattice of Fe2(B,C) phase replacing iron atoms and form at their boundaries AlB12C and SiC compounds respectively. The additions of Al and Si to the boron-rich Fe–B–C alloys help to modify their fragility: while they slightly decrease microhardness values, addition of these elements improves the fracture toughness of the constituent phases. Increase in a cooling rate from 10 to 103 K/s does not bring about any noticeable changes in the solubility behavior of the investigated alloying elements. The rapid cooling gives rise to microhardness and fracture toughness of the phase constituents which average sizes significantly decrease. The effects of the alloying elements on the structure and mechanical properties of the investigated boron-rich Fe–B–C alloys have been explained considering differences in the atomic radii and electronic structure of the solute Ti, Al, or Si atoms.


2019 ◽  
Vol 51 (2) ◽  
pp. 175-187
Author(s):  
Gabriela Téllez-Arias ◽  
José Miranda-Hernández ◽  
Oscar Olea-Mejía ◽  
J. Lemus-Ruiz ◽  
Eduardo Terrés

The objective of this work was to study the influence of the addition of silver nanoparticles in the microstructure of mullite at two different temperatures of sintering (1500 and 1600?C), in order to decrease the porosity and increase the density as well better the hardness and fracture toughness. The microstructural characteristics were studied by scanning electron microscopy, confocal scanning microscopy and X-ray diffraction. Mullite/Ag cermets with homogenous microstructure were and a fracture toughness of 2.42 MP??m1/2.


2010 ◽  
Vol 658 ◽  
pp. 428-431
Author(s):  
Bhupendra Joshi ◽  
Hyun Hwi Lee ◽  
Seung Ho Kim ◽  
Zheng Yi Fu ◽  
Koichi Niihara ◽  
...  

The addition of h- BN to a polycrystalline Si3N4 was to increase the fracture toughness and other mechanical properties such as flexural strength and hardness of the material. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO and h-BN. The composite contained from 0 to 2 wt.% BN powder with sintering aids (9% AlN + 3% MgO). The transparency, mechanical properties and microstructure of hot pressed polycrystalline Si3N4-BN composite materials were investigated by UV/VIS spectrophotometer, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The transparency decreased with increasing the content of h-BN into Si3N4.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2012 ◽  
Vol 512-515 ◽  
pp. 706-709 ◽  
Author(s):  
Chang Ling Zhou ◽  
Yan Yan Wang ◽  
Zhi Qiang Cheng ◽  
Chong Hai Wang ◽  
Rui Xiang Liu

ZrB2-20%volSiC ceramic composites with different volume of BN short fiber were fabricated by the hot-pressing sintering under 2000°C. The content of BN short fiber changed from 0 to 15vol%. The density, flexural strength, fracture toughness and thermal expansions coefficient were studied. The microstructures of the samples were observed by scanning electron microscopy. The results show that the introducing of BN short fiber into the ZrB2-20%volSiC lead to a serious of change to the mechanical properties of the ceramic. When the content of the BN short fiber is 10vol%, the flexural strength and fracture toughness reach 422.1MPa and 6.15 MPa•m 1/2 respectively. And the mechanism of the increasing toughness was studied.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Ruy A. Sá Ribeiro ◽  
Marilene G. Sá Ribeiro ◽  
Gregory P. Kutyla ◽  
Waltraud M. Kriven

To determine the viability of using a local resource for geopolymer synthesis, geopolymers were synthesized using metakaolin made from clay mined in the Amazonian region of Brazil. Samples were made with mixed potassium-sodium and pure sodium metakaolin-based geopolymer. Samples were also made using commercial metakaolin (CMK) from BASF, Inc. as a comparison to the Amazonian metakaolin (AMK). Scanning electron microscopy was used to investigate the microstructure of the materials. X-ray diffraction was able to confirm the formation of geopolymer. The mechanical properties of AMK material were nearly equivalent to those based on CMK. Neither CMK nor AMK reacted completely, although samples made with CMK showed less unreacted material. By increasing the mixing intensity and duration, the amount of residual unreacted material was substantially reduced, and mechanical properties were improved.


Sign in / Sign up

Export Citation Format

Share Document