Experimental Study of Aggregates Size Effect on Strain, Damage and Permeability of Concrete

2017 ◽  
Vol 729 ◽  
pp. 115-121 ◽  
Author(s):  
Aurélie Fabien ◽  
Marta Choinska ◽  
Stéphanie Bonnet ◽  
Abdelhafid Khelidj

Two approaches can be used to study the size effect: one based on the change in sample size, and the other based on the variation in the aggregates size. The main objective of this research was to study the second approach. We studied 6 various concrete mixes and each test was repeated three times. For each material, uniaxial cyclic compressive tests have been performed to investigate the behaviour of concrete in a partially damaged state. The specimens were submitted to three levels of loading corresponding to 30, 60 and 80% of the maximal compressive strength. The damage indicator chosen is the decrease of Young’s modulus and the tightness indicator is the gas permeability. Results show that the concrete composition and more particularly the aggregate size have an important influence on the mechanical and transfer properties of concretes.

1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


2020 ◽  
Vol 2 (1) ◽  
pp. 48-61
Author(s):  
Sang Kee ◽  
Yuhee Park ◽  
Eun Choi

This study was experimental in nature and conducted with the view to make comparison between two samples. The first sample consisted of concrete with rice husk ash mixed in it and the other sample was without such addition. The first test conducted to test the performance was simple measurements. The results show that for the sample without addition of rice husk ash, the density was 2355.97 and for included sample, the density was 2354.44 with insignificant differences (t-stat= 0.766, P>.05). For V-B test, the sample without addition of rice husk as was 8.34 and for include sample, it was 8.01. The differences for V-B for both samples were statistically insignificant (t-stat=1.431, P>.05). The slump test without for the sample without addition of rice husk was 12.75 and for included sample, it was 18.56. The difference was statistically significant (t-stat=2.455, P<.05). The compressive strength for excluded sample was 24.32 and for included sample was 20.01. The results were statistically insignificant (t-value= 1.13, P>.05). For flexural strength test, for excluded sample, the average score was 9.02 and for included sample, the average score was 9.19. The difference was statistically insignificant (t-stat=1.45, P>.05). Overall, the results lead to the conclusion that there are insignificant differences of addition of rice husk ash in concrete.


2012 ◽  
Vol 446-449 ◽  
pp. 3725-3729
Author(s):  
Wei Hua Ma ◽  
Hong Zhen Kang

Compressive tests of 30 concrete column specimens with three concrete strength grades are carried out in this paper to study ultimate compressive strength of specimens. The specimens are divided into three groups, that is, unconfined, confined by CFRP with no initial compression and confined by CFRP with various initial compressions. The different initial compressions’ influence on ultimate stresses and strains are investigated. The decrease of CFRP reinforcing effect due to pre-compression are analyzed. The research results provide experimental datum for reinforced design of existing concrete columns.


2016 ◽  
Vol 842 ◽  
pp. 31-35
Author(s):  
Bambang K. Hadi ◽  
Rahmah S. Trisolicha

Reliable experimental data on compressive strength of composite material are important, especially for designing structures having dominant compressive stresses, such as bolted joints. Composite materials usually have lower compressive strengths compared to tensile strengths. Woven composites added more complications. Initial waviness in woven composites makes the compressive strengths even much lower. Therefore, in this paper, experimental study on the compressive strengths of woven composites will be presented. The experiments used standard ASTM D3410M-03. Woven glass-epoxy will be tested extensively. The specimens were produced using standard hand layup techniques. Several layup configurations were tested, namely (0/90)s, (0/90/±45)s and (±45)s. The results showed that woven glass-epoxy generated failure modes specifically found in compressive tests of composites, such as: fiber micro-buckling, fiber crushing and shear band-formation. It was also found that unlike in the case of tensile tests, the layup configurations did not affect the compressive strength values. It seems that the fiber orientation will not affect significantly the compressive strengths. The epoxy matrix played more dominant role on the compressive behavior of woven glass-epoxy composites.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yanli Hu ◽  
Xuewei Sun ◽  
Aiqun Ma ◽  
Peiwei Gao

An experimental study was carried out on the uniaxial compression, uniaxial splitting, pure shear, and compression size effect of rubber concrete with 5 different substitution rates by applying hydraulic servo and direct shear apparatus. Then, by comparing the failure modes and ultimate strength eigenvalues of rubber concrete under different loading conditions, the following conclusions were drawn: with the increase of rubber substitution rate, the concrete specimens maintain a relatively good integrity under uniaxial compressive failure; on the contrary, the failure sections under uniaxial slitting and pure shear gradually become uneven with an increasing amount of fallen rubber particles. With the increase of specimen size, the integrity of rubber concrete after failure is gradually improved. Affected by an increased rubber substitution rate, the uniaxial compressive strength, splitting tensile strength, and shear strength of the concrete gradually decrease, while the plastic deformation capacity gradually increases. Specifically, the compressive strength is reduced by a maximum of 60.67%; the shear strength is reduced by a maximum of 49.85%; and the uniaxial splitting strength is reduced by a maximum of 58.38%. Then, we analyzed the strength relationship and the underlying mechanism among the three types of loading modes. It is found that, at the same rubber substitution rate, the compressive strength of rubber concrete gradually increases as the specimen size decreases, and the size effect on the compressive strength gradually decreases as the rubber substitution rate increases. Meanwhile, we performed qualitative and quantitative analysis on the equation describing the coupling effect of specimen size and rubber substitution rate on the compressive strength; the results suggest that the proposed equation is of a high level of applicability. Our research has a reference value for the application and promotion of rubber concrete in actual engineering projects.


2013 ◽  
Vol 634-638 ◽  
pp. 2684-2692 ◽  
Author(s):  
Xi Xi He ◽  
Shan Wu

Based on the test results of compressive strength and splitting strength of three kinds of cubic specimens of pervious concrete whose side length is respectively 100mm, 150mm and 200 mm, the size effect on strength and its associated impact factors which include porosity and particle size of coarse aggregate analyzed. In the test, water cement ratio of every group of concrete mix proportion is constant. The main results are as follows: (1) Size effect on concrete of the pervious concrete is greater than that of ordinary concrete; (2) Size effect on splitting strength is greater than that on cubic compressive strength. (3) Size effect on splitting strength significantly increases with the increase of the aggregate size; (4) Weibull modulus m obtained in statistical test for compressive strength equals to 9, which should be more than twice the value of tensile strength. (5)Size effect on strength of concrete is related to its statistical discreteness, that is, the size effect is more obvious when the dispersion coefficient Cv is greater; (6)Weibull’s statistical size effect can be used to describe the size effect on strength indicators of concrete; Theoretical values of Weibull’s statistical size effect derived from the experiment agree with the test results well. (7) The abnormal trends of size effect are related to the abnormal changes of dispersion coefficient.


2018 ◽  
Vol 4 (4) ◽  
pp. 724 ◽  
Author(s):  
Aneel Manan ◽  
Mushtaq Ahmad ◽  
Fawad Ahmad ◽  
Abdul Basit ◽  
Muhammad Nasir Ayaz Khan

The aim of the study is to investigate compressive strength of pervious concrete by reduction of fine aggregate from zero to 100%, additionally investigate infiltration rate of pervious concrete. Experimental study has conducted at Cecos Engineering University Peshawar. The pervious concrete samples were produced for 7 and 28 days. Compressive strength of pervious concrete indicated higher reduction of the sand reduces compressive strength and almost 50% compressive strength decreased by reduction of 100% sand from the design mix. On the other side, infiltration rate for 28 days shows direct relation above 40% reduction of sand and highest 273% of infiltration rate by reducing 100% sand from the design mix. The 90% reduction of sand from concrete give considerable compressive strength of 2150 psi and infiltration rate of 165.79 inch/hour, which can be recommended for pavements of parking and walking area.


Sign in / Sign up

Export Citation Format

Share Document