Numerical and Experimental Analysis of the Nonlinear Response of Reinforced Concrete Frame Structure from Seismic Effects

2017 ◽  
Vol 738 ◽  
pp. 205-214
Author(s):  
Ivana Veghova

Using capacity spectrum method was analyzed frame reinforced concrete structures. Capacity spectrum method has been used to analyse frame reinforced concrete structures. Geometry, material properties and reinforced cross sections were designed by experimental tested model of reinforced concrete frame joints in the scale of 1:1. The results were compared with the results of the analysis of the structure of the same geometrical characteristics but of standard material properties of concrete and steel.

2011 ◽  
Vol 94-96 ◽  
pp. 1505-1510 ◽  
Author(s):  
Xiao Yu Miao ◽  
She Liang Wang ◽  
Yu Jiang Fan

Reinforced concrete structures are prone to damage during their service lifetime caused by factors such as the effect of overload, ground motions, and other actions. Undetected damage may lead to structural failures. Early detection of damage and timely repairs can prevent catastrophic failure and ensure regular service of structures. As a result, a so-called delimitation wavelet-transform search method, based on the characteristic of multi-resolution of wavelet transform, is presented in this paper for on-line damage identification of reinforced concrete structures. One possible advantage of this method is that the damage temporal and spatial location can be detected rapidly and efficiently. Further research is carried out with numerical simulation of a structure test model to study the storied damage detection and localization of reinforced concrete frame structures under seismic actions. The analyzing result is compared with that observed in a simulated earthquake vibration stand test. Good agreement is obtained and it verifies the effectiveness and validity of the method proposed in this paper.


2021 ◽  
Vol 20 (2) ◽  
pp. 041-056
Author(s):  
Maciej Tomasz Solarczyk

The article analyses the impact of modeling the cross-section of two-nave and two-storey reinforced concrete frame with dimensions: 18.0 m × 32.0 m as a bars on the results of bending moments, the value of elastic deflection and dimensioning of reinforcement due to bending. Six options were considered: a beam as a rectangular section and five T-beam variants with different definition of effective flange width. The differences in obtained results were commented. Conclusions useful for the designing of reinforced concrete structures were presented. The procedure for determining the effective flange width in the context of PN-EN 1992-1-1:2008 and PN-B 03264:2002 standards with a commentary on the use of effective flange width in calculations and construction of reinforcement in reinforced concrete structures were described. Brief description of determining the reinforcement due to bending according to simplified method given in PN-EN 1992-1-1:2008 was presented. In addition, the standard formula for determining the minimum cross sectional area of reinforcement (9.1N) in PN-EN 1992-1-1:2008 with a proposal for its strict determination for the T-beam with a flange in the tensile zone was analyzed.


2016 ◽  
Vol 62 (1) ◽  
pp. 51-64 ◽  
Author(s):  
M. Szczecina ◽  
A. Winnicki

Abstract The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.


1989 ◽  
Vol 16 (5) ◽  
pp. 627-649 ◽  
Author(s):  
Patrick Paultre ◽  
Daniel Castele ◽  
Suzanne Rattray ◽  
Denis Mitchell

The 1984 CSA standard for the design of concrete structures for buildings provided new seismic design and detailing requirements for concrete structures. Full-scale, reversed cyclic loading tests of reinforced concrete beam–slab–column subassemblages were carried out to investigate the seismic performance of frame structures designed with the latest Canadian code. The test results indicate the importance of including the influence of slab reinforcement in computing the beam capacity as well as the need to carefully design the joint regions for shear. The test results indicate the excellent performance of frame components designed with K = 0.7 (R = 4.0) and the poor performance of those designed and detailed with K = 2.0 (R = 1.5). The performance of subassemblages designed with K = 1.3 (R = 2.0) depends on the column to beam strength ratio and on the shear strength of the joints. Models to predict the flexural response as well as the shear response of key elements are described and the role of the spandrel beam in limiting the effective slab width is explained. Key words: seismic design, reinforced concrete, detailing, structures, codes.


2020 ◽  
Vol 18 (5) ◽  
pp. 1175-1191
Author(s):  
Utino Worabo Woju ◽  
A.S. Balu

Purpose The aim of this paper is mainly to handle the fuzzy uncertainties present in structures appropriately. In general, uncertainties of variables are classified as aleatory and epistemic. The different sources of uncertainties in reinforced concrete structures include the randomness, mathematical models, physical models, environmental factors and gross errors. The effects of imprecise data in reinforced concrete structures are studied here by using fuzzy concepts. The aim of this paper is mainly to handle the uncertainties of variables with unclear boundaries. Design/methodology/approach To achieve the intended objective, the reinforced concrete beam subjected to flexure and shear was designed as per Euro Code (EC2). Then, different design parameters such as corrosion parameters, material properties and empirical expressions of time-dependent material properties were identified through a thorough literature review. Findings The fuzziness of variables was identified, and their membership functions were generated by using the heuristic method and drawn by MATLAB R2018a software. In addition to the identification of fuzziness of variables, the study further extended to design optimization of reinforced concrete structure by using fuzzy relation and fuzzy composition. Originality/value In the design codes of the concrete structure, the concrete grades such as C16/20, C20/25, C25/30, C30/37 and so on are provided and being adopted for design in which the intermediate grades are not considered, but using fuzzy concepts the intermediate grades of concrete can be recognized by their respective degree of membership. In the design of reinforced concrete structure using fuzzy relation and composition methods, the optimum design is considered when the degree of membership tends to unity. In addition to design optimization, the level of structural performance evaluation can also be carried out by using fuzzy concepts.


2020 ◽  
Vol 6 (159) ◽  
pp. 113-117
Author(s):  
O. Chuprynin ◽  
N. Sereda ◽  
A. Garbuz

One of the main tasks, which is solved at the design stage of the reinforced concrete element, is the analysis of the stress-strain state, as well as the determination of the service life. The article is devoted to modeling of nonlinear creep of reinforced concrete structural elements taking into account damages and return of the creep. The high priority of the research topic is substantiated, the purpose and objectives are formulated. A combination of a plastic model with fracture mechanics is proposed to simulate the behavior of concrete in accordance with its characteristics, including not only stress and deformation, but also the degradation of its stiffness. The resulting equations of state correspond to the law reverse deformations. The finite element method is used to solve the boundary value problem. For the sake of numerical modeling of thin-walled structures, the use of special shell elements is proposed. The mathematical formulation of the problem of creep of reinforced concrete structural elements taking into account anisotropy of material properties and creep deformations and return of the creep is presented. Creep problems of thin-walled structural elements were solved with the help of developed software. Analyzed the deformation of reinforced concrete panel of cylinder. The analysis of the results allows us to judge the effectiveness of the proposed model as a whole. The equation of state reflects the anisotropy of the material properties and takes into account the damage, which allows for a reliable assessment of the strength, stiffness and durability of reinforced concrete structures. Conclusions about the adequacy of the analysis of reliability and durability of reinforced concrete structures using the proposed model.


2011 ◽  
Vol 255-260 ◽  
pp. 524-528
Author(s):  
Xue Yu Xiong ◽  
Feng Gao ◽  
Yang Li

Based on the static test of large-scaled prestressed steel concrete frames, the behavior of crack were tested and investigated. In this paper, according to theory of reinforced concrete members, Code for design of concrete structures(GB 50010-2002)and code ACI 318—05, the formulas of cracking moment considering secondary axial forces were deduced and verified by test results. Conclusion can be drawn as follow: the calculation errors of formulas derive from theory of reinforced concrete members is small, generally less than 6%; the errors of formulas referring to Code for design of concrete structures(GB 50010-2002)is about 10%, which is satisfy the needs of engineering and simply to be calculated; Cracking moment calculated by formulas referring to code ACI 318—05 is less than test result, it is unsafe for engineering application.


Sign in / Sign up

Export Citation Format

Share Document