Production of Cemented Carbide-Alumina Composite Material by Wet-Shaping Process

2017 ◽  
Vol 749 ◽  
pp. 199-204
Author(s):  
Akihiko Ikuta ◽  
Hideki Kyogoku ◽  
Hiroyuki Suzuki

In this study, the characteristics of the production process of cemented carbide-alumina composite material made using the wet-shaping process were investigated. The production process in this study produced a green compact of composite material by repeating the wet-shaping process for the molding of each material, and it made possible the sintering of plural materials with varying sintering conditions at the same time, a process that was difficult until now. By using wet-shaping and ultra-fine powder, which have superior sintering characteristics, sintering conditions were found in which it was possible to sinter cemented carbide and alumina at the same time, with a sintering temperature of 1723 K and a sintering time of 5.4 ks. With these sintering conditions, the relative densities of the sintered compact of cemented carbide and alumina were 99.0 % and 98.9 %, respectively. It is clear that the characteristics of sintered compact made with these sintering conditions are superior. When the cemented carbide slurry and the alumina slurry were layered by repeating the wet-shaping process, a composite material was able to be produced by inserting an active brazing filler metal in the interface to improve the bondability of the cemented carbide and the alumina during the sintering. However, it was observed that the active brazing filler metal and the cobalt in the cemented carbide flowed out from the interface between the cemented carbide and the alumina in the sintered compact of the composite material.

2015 ◽  
Vol 656-657 ◽  
pp. 86-91 ◽  
Author(s):  
Akihiko Ikuta ◽  
Hideki Kyogoku ◽  
Hiroyuki Suzuki

In this study, production processes for porous alumina, and the characteristics of the material, were investigated. Porous alumina was produced by a wet-shaping process in which air bubbles were introduced into the slurry. The feature of this production process is that many pores are produced by slip casting carried out using whipped slurry, where only the conditions of the slurry are adjusted. The advantage of this process is its simplicity. From the results, it is made clear that a green compact of porous alumina can be produced by changing the amount of solvent and binder, and also that a sintered compact of porous alumina can be produced by a low sintering temperature, such as 1473 K. The four point bending strength of porous alumina is about 515 MPa when the porosity is about 30 %. The excellent characteristics of the sintered compact of porous alumina are shown by the observation results of the fracture surface in this production process. The dense alumina body is sintered while maintaining the fine grains, and with the micro pores remaining in the grain boundary.


2006 ◽  
Vol 40 (93) ◽  
pp. 21-28
Author(s):  
Yasuhiro OKAMOTO ◽  
Norio KATAOKA ◽  
Yoshiyuki UNO ◽  
Eiji YUASA ◽  
Shin-ichiro KUBOTA

2007 ◽  
Vol 534-536 ◽  
pp. 1529-1532 ◽  
Author(s):  
Celine Pascal ◽  
Jean Marc Chaix ◽  
A. Dutt ◽  
Sabine Lay ◽  
Colette H. Allibert

A steel/cemented carbide couple is selected to generate a tough/hard two layers material. The sintering temperature and composition are chosen according to phase equilibria data. The choice of optimal sintering conditions needs experimental studies. First results evidence liquid migration from the hard layer to the tough one, leading to porosity in the hard region. The study of microstructure evolution during sintering of the tough material (TEM, SEM, image analysis) evidences the coupled mechanisms of pore reduction and WC dissolution, and leads to temperature and time ranges suitable to limit liquid migration. The sintering of the two layer material is then shown to need further compromises to avoid interface crack formation due to differential densification.


2019 ◽  
Vol 45 (16) ◽  
pp. 19962-19970 ◽  
Author(s):  
Shuaibo Gao ◽  
Shuai Wang ◽  
Jian Kong ◽  
Ning Xu ◽  
Pengfei Xing

2010 ◽  
Vol 457 ◽  
pp. 404-409
Author(s):  
Setsuo Aso ◽  
Hiroyuki Ike ◽  
Ken-Ichi Ohguchi ◽  
Yoshinari Komastu ◽  
Nobuo Konishi

Particle reinforcement via the insertion of hard particles is a promising process in materials reinforcing. Particle-reinforced spheroidal graphite martensitic cast iron (SGMC), in which mixed particles of cermet and cemented carbide are dispersed, was achieved by an insertion process. A four-point bending strength test was applied to evaluate the particle composite material. An evaporative pattern process was used on the bending-test specimen to form a composite layer in the central part. Using a combination of three sizes of cermet particles and two sizes of cemented-carbide particles, the bending strength was found to increase with each small-particle combination. The Weibull coefficient m of the four-point bending strength of the particle-reinforced composite material (PRCM) ranged from 4 to 13, and m was large in the specimen with large bending strength.


2011 ◽  
Vol 466 ◽  
pp. 121-130 ◽  
Author(s):  
Josef Hegger ◽  
Christian Kulas ◽  
Michael Horstmann

In the last 30 years, façade-panels made of steel-reinforced concrete have become less attractive for architects and clients. Due to the metallic reinforcement, the insufficient concrete covers of former design code generations and hence the material-dependent corrosion, many cases of damage occurred. Using technical textiles for a new composite material, Textile Reinforced Concrete (TRC), it is possible to produce concrete structures which are not vulnerable to corrosion. The presented ventilated large-sized façade elements and self-supporting sandwich panels exemplify the capability of TRC. In the paper, applied materials are characterized and the production process of tailor-made textile reinforcements as well as the load-bearing behavior of the members is described.


2009 ◽  
Vol 610-613 ◽  
pp. 687-691 ◽  
Author(s):  
Yi Wu ◽  
Xin Wang ◽  
Fei Long ◽  
Yu Fang Shen ◽  
Zheng Guang Zou

Steel-bonded cemented carbide GT35 was fabricated from natural ilmenite by in-situ carbothermic reduction and vacuum pressureless sintering. The effects of C content on the mechanical properties and microstructures of GT35 composites were investigated. As an excellent reducer, carbon provides an impetus for a series of reductive process. C content determines the melting point of the steel matrix, and directly affects the mechanism of dissolving and segregating of TiC particles, forming a netlike microstructure. Besides, the liquid steel whose viscosplasticity is determined by C content was coated on the surface of the composite and refrained the release of CO. The results showed that the good mechanical properties of steel-bonded cemented carbide GT35 composite were obtained with 0.9wt.% C at the same sintering conditions and the density reached 6.12g/cm3, the average bending strength was over 1229MPa after heat treatment, the mean hardness HRC was 69.4. It also showed that in-situ reduction of natural limonite was a feasible way to fabricate good performance GT35 composite with a relatively low cost.


Sign in / Sign up

Export Citation Format

Share Document