Thermo-Mechanical Analysis of Laser Additive Manufacturing for Metals

2019 ◽  
Vol 825 ◽  
pp. 7-12
Author(s):  
Hsuan Hao Shih ◽  
Chih Kuang Lin

The aim of this study is to develop a finite element analysis technique to characterize the distributions of temperature and stress in the process of multilayer deposition of metallic powders by laser additive manufacturing (LAM). Simulation results indicate the residual normal stress in the laser moving direction is greater than that in other directions due to a larger temperature gradient, and it increases with number of deposited layers. Highly residual stresses are present in the LAM build and at the base nearby the interface between the build and base.

Author(s):  
Luiz Bassi Junior ◽  
Rafael Oliveira de Souza Silva ◽  
Victor Hugo Dias dos Santos ◽  
Abner da Rocha Lourenço ◽  
Paulo Vinicius Trevizoli ◽  
...  

2016 ◽  
Vol 36 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Sandro Donnini Mancini ◽  
Antídio de Oliveira Santos Neto ◽  
Maria Odila Hilário Cioffi ◽  
Eduardo Carlos Bianchi

A feasibility study was conducted to determine the use of polyphthalamide/glass-fiber and polyphthalamide/glass-fiber/polytetrafluoroethylene-based composites as substitutes for aluminum and steel, respectively, in the production of motorcycle oil pump parts (housing, shaft/inner gerotor and outer gerotor). New and used (80,000 km) oil pumps were subjected to performance tests, whose results indicated that the pressure and temperature of the used pump reached a maximum of 1.8 bar and 93℃, respectively. Thermogravimetric analysis indicated that the materials are stable at the maximum operating temperature, which is 20℃ lower than the minimum glass transition temperature obtained by dynamic mechanical analysis for both materials at the analyzed frequencies (defined after calculations based on rotations in neutral, medium and high gear). The pressure value was multiplied by a safety factor of at least 1.6 (i.e., 3 bar), which was used as input for a finite element analysis of the parts, as well as the elasticity modulus at glass transition temperatures obtained by dynamic mechanical analysis. The finite element analysis indicated that the von Mises stresses to which the composite parts were subjected are 7 to 50 times lower than those the materials can withstand. The results suggest that it is feasible to manufacture motorcycle oil pump parts with these composites.


1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


1986 ◽  
Vol 30 (4) ◽  
pp. 920-928
Author(s):  
Yoshinobu Maeda ◽  
Masafumi Mori ◽  
Sadami Tsutsumi ◽  
Toshihiro Chinzaka ◽  
Masataka Minoura ◽  
...  

2011 ◽  
Vol 143-144 ◽  
pp. 437-442
Author(s):  
Bao Hong Tong ◽  
Yin Liu ◽  
Xiao Qian Sun ◽  
Xin Ming Cheng

A dynamic finite element analysis model for cylindrical roller bearing is developed, and the complex stress distribution and dynamic contacting nature of the bearing are investigated carefully based on ANSYS/LS-DYNA. Numerical simulation results show that the stress would be bigger when the element contacting with the inner or outer ring than at other times, and the biggest stress would appear near the area that roller contacting with the inner ring. Phenomenon of stress concentration on the roller is found to be very obvious during the operating process of the bearing system. The stress distributions of different elements are uneven on the same side surface of roller in its axis direction. Numerical simulation results can give useful references for the design and analysis of rolling bearing.


Jurnal METTEK ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Angga Restu Pahlawan ◽  
Rizal Hanifi ◽  
Aa Santosa

Frame adalah salah satu komponen yang sangat penting dalam sebuah kendaraan, yang berfungsi sebagai penopang penumpang, mesin, suspensi, sistem kelistrikan dan lain-lain. Melihat fungsi dari frame sangat penting, maka dalam merancang sebuah frame harus diperhitungkan dengan baik. Banyak sekali jenis pengujian yang sering dipakai dalam perancangan sebuah struktur frame, salah satunya adalah digunakannya metode komputasi dengan menggunakan metode Finite Element Analysis (FEA). Tujuan dari penelitian ini adalah untuk mengetahui distribusi tegangan, regangan, displacement, dan safety factor dari hasil pembebanan statis pada frame gokar. Struktur frame didesain dan dianalisis menggunakan software Solidworks 2016. Material yang digunakan frame adalah baja AISI 1045 hollow tube 273,2 mm, dengan menggunakan pembebanan pengendara sebesar 50 kg dan 70 kg. Hasil dari perhitungan manual didapatkan tegangan maksimum sebesar 4,735  107 N/m2, sedangkan dari simulasi didapatkan sebesar 4,516  107 N/m2. Regangan maksimum didapatkan dari perhitungan manual sebesar 2,310  10-4. Displacement maksimum didapatkan dari perhitungan manual sebesar 1,864  108 mm, sedangkan dari simulasi didapatkan sebesar 1,624  108 mm. Safety factor minimum didapatkan dari perhitungan manual sebesar 11,193, dan perhitungan simulasi didapatkan sebesar 11,736. The frame is one of the most important components in a vehicle, which functions as a support for passengers, engines, suspensions, electrical systems and others. Seeing the function of the frame is very important, so designing a frame must be taken into account well. There are many types of tests that are often used in the design of a frame structure, one of which is the use of computational methods using the Finite Element Analysis (FEA) method. The purpose of this study was to determine the distribution of stress, strain, displacement, and safety factor from the results of static loading on the kart frame. The frame structure was designed and analyzed using Solidworks 2016 software. The material used in the frame is steel AISI 1045 hollow tube 27  3,2 mm, using a rider load of 50 kg and 70 kg. The result of manual calculation shows that the maximum stress is 4,735  107 N/m2, while the simulation results are 4,516  107 N/m2. The maximum strain is obtained from manual calculation of 2,310  10-4. The maximum displacement is obtained from manual calculations of 1,864  108 mm, while the simulation results are 1,624  108 mm. The minimum safety factor obtained from manual calculation is 11,193, and the simulation calculation is 11,736.


2013 ◽  
Vol 465-466 ◽  
pp. 693-698 ◽  
Author(s):  
Seok Kwan Hong ◽  
Jeong Jin Kang ◽  
Jong Deok Kim ◽  
Heung Kyu Kim ◽  
Sang Yong Lee ◽  
...  

In this study, the tube sinking process for manufacturing the micro Ti-0.2Pd tube (2.4 mm external diameter, 0.4 mm thickness) was simulated by finite element analysis. The external diameter of the initial tube was 5.0 mm. In order to simulate the tube sinking process, the flow stress equation was deducted from the result of the tensile test and friction coefficient was indirectly obtained through the parameter studies. The simulation results showed the simulation error according to the change of diameter predicted to be less than 2%. The defect of the internal surface by stress was found through the experiment result.


Sign in / Sign up

Export Citation Format

Share Document