Microstructure and Properties of TiB2/AlFeNiCoCr Composites by Spark Plasma Sintering

2020 ◽  
Vol 842 ◽  
pp. 83-89
Author(s):  
Dai Hong Xiao ◽  
Min Dong Wu

TiB2/AlFeNiCoCr high-entropy-alloy-matrix composites were fabricated by spark plasma sintering. Effects of SPS process on microstructure and mechanical properties of 0.5 vol.% TiB2/AlFeNiCoCr composites were studied using X-ray diffraction, density testing, scanning electron microscopy, mechanical property testing. It is shown that increasing of sintering temperature and pressure can improve the relative density and compressive properties of 5 vol. %TiB2/AlCoCrFeNi composites. During the spark plasma sintering, there is phase evolution in the composites. The 5 vol. % TiB2/AlCoCrFeNi composite after sintering at 1200 °C and 30 ~ 45 MPa is composed of phases BCC, B2, FCC, σ and TiB2.

2019 ◽  
Vol 34 (5) ◽  
pp. 756-766 ◽  
Author(s):  
Lavanya Raman ◽  
K. Guruvidyathri ◽  
Geeta Kumari ◽  
S.V.S. Narayana Murty ◽  
Ravi Sankar Kottada ◽  
...  

Abstract


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 929
Author(s):  
Kaouther Zaara ◽  
Mahmoud Chemingui ◽  
Sophie Le Gallet ◽  
Yves Gaillard ◽  
Lluisa Escoda ◽  
...  

A FeCoNi(B0.5Si0.5) high-entropy alloy with the face-centered cubic (FCC) crystal structure was synthesized by mechanical alloying and spark plasma sintering (SPS). Phase evolution, microstructure, morphology and annealing behaviors were investigated. It was found that a single FCC solid solution appears after 50 h of milling. The grain size was 10 nm after 150 h of milling. Microstructure parameters were calculated by the Rietveld fitting of the X-ray Diffraction patterns. Magnetic characterizations of milled and annealed powders at 650 °C for 1 h were investigated. The heat treatment improves the magnetic properties of the milled powders by enhancing the saturation magnetization value from 94.31 to 127.30 emu/g and decreasing the coercivity from 49.07 to 29.57 Oe. The cohabitation of the FCC phase with the equilibrium crystalline phases observed after annealing is responsible of this magnetic softening. The as-milled powder was also consolidated by spark plasma sintering at 750 and 1000 °C. The obtained specimen consolidated at 750 °C improved the coercivity to 25.06 Oe and exhibited a compressive strength of 1062 Mpa and Vickers hardness of 518 ± 14 HV, with a load of 2 kN. The nanoindentation technique with the Berkovich indentor gave hardness and indentation elastic modulus of 6.3 ± 0.3 Gpa (~640 HV) and 111 ± 4 Gpa for samples consolidated by SPS at 750 °C.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6520
Author(s):  
Chun Chiu ◽  
Hsun-Hsiang Chang

In this study, AZ91 magnesium-alloy-based metal matrix composites (MMCs) reinforced with 10 wt% of Al0.5CoCrFeNi2 high-entropy alloy (HEA) particles and SiC particles were prepared by a spark plasma sintering (SPS) process at 300 °C. The effects of reinforcements on the microstructure and mechanical properties of AZ91-based MMCs were studied. The results showed that AZ91–HEA composite consisted of α-Mg, Mg17Al12 and FCC phases. No interfacial reaction layer was observed between HEA particles and the Mg matrix. After adding HEA into AZ91, the compressive yield strength (C.Y.S) of the AZ91–HEA composite increased by 17% without degradation of failure strain. In addition, the increment in C.Y.S brought by HEA was comparable to that contributed by commonly used SiC reinforcement (15%). A relatively low porosity in the composite and enhanced interfacial bonding between the α-Mg matrix and HEA particles make HEA a potential reinforcement material in MMCs.


Sign in / Sign up

Export Citation Format

Share Document