Rate-Dependent Material Properties of Adhesively Bonded Joints - Must Have or Nice to Have?

2020 ◽  
Vol 858 ◽  
pp. 14-19
Author(s):  
Michael May

In the context of automotive crash simulation, rate-dependent properties are sought for all materials undergoing deformation. Measuring rate-dependent properties of adhesively bonded joints is a challenging and associated with additional cost. This article assesses the need for having rate-dependent properties of adhesively bonded joints for the example of a typical automotive structure, an adhesively bonded metallic T-joint. Using Finite Element simulation it could be shown that good agreement between experiment and simulation was only achieved if rate-dependent properties were considered for the adhesive.

1988 ◽  
Vol 16 (3) ◽  
pp. 146-170 ◽  
Author(s):  
S. Roy ◽  
J. N. Reddy

Abstract A good understanding of the process of adhesion from the mechanics viewpoint and the predictive capability for structural failures associated with adhesively bonded joints require a realistic modeling (both constitutive and kinematic) of the constituent materials. The present investigation deals with the development of an Updated Lagrangian formulation and the associated finite element analysis of adhesively bonded joints. The formulation accounts for the geometric nonlinearity of the adherends and the nonlinear viscoelastic behavior of the adhesive. Sample numerical problems are presented to show the stress and strain distributions in bonded joints.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000246-000258
Author(s):  
Nina S. Dytiuk ◽  
Thomas F. Marinis ◽  
Joseph W. Soucy

Abstract Adhesively bonded joints are ubiquitous in electronic assemblies that are used in a wide range of applications, which include automotive, medical, military, space and communications. The steady drive to reduce the size of assemblies in all of these applications, while providing increased functionality, generates a need for adhesive joints of higher strength, improved thermal and electrical conductivity and better dielectric isolation. All of these attributes of adhesive joints are degraded by the presence of voids in them. The quest to minimize voids in bonded structures motivated a previous study of their formation in a solvent cast, die bond epoxy film, which undergoes a liquid phase transition during cure. That work is extended in this study by including the effects of various filler morphologies in the adhesive. Fillers are added to adhesives to facilitate handling of thin sheet formats, control bond line thickness and reduce coefficient of thermal expansion. As such, fillers are selected to be inert with respect to the adhesive chemistry, while being readily wetted by it in the liquid state. Common filler morphologies include woven and molded open meshes, fibers chopped to uniform length, and spheres of uniform or distributed diameters. Void formation is influenced by a number factors, which include wettability of the bonded surfaces, adsorbed water, amount of solvent retained in the film, volume of entrapped air, thermal profile of the cure schedule, and clamping pressure during cure. The presence of fillers in the adhesive adds the additional factors of constrained diffusion paths and increased area for void nucleation. We have changed our approach to modeling the diffusion of volatile species in adhesive joints from a finite difference calculation in a uniform adhesive medium used previously, to a finite element model of a complex diffusion space. The open source program Gmsh is used to generate the diffusion space from a set of input parameters. The calculations of concentration profiles and diffusion fluxes of volatile species at the void interface are made using the open source finite element program elmer. As done previously, the position of the void interface is updated by integrating the product of time and flux of diffusing species over the area of the interface. The internal pressure of the void is determined by application of the Young-Laplace equation, while Henry’s law is used to estimate the concentration of diffusing species adjacent to the void interface. The calculation proceeds for a time equivalent to the integral of the time temperature product required to achieve a 70% cure state of the adhesive, at which point the void interface is immobile. The experimental approach is the same as used previously, with the filled adhesive sandwiched between glass slides and cured on a hot plate while imaged through a microscope. Images are automatically captured and analyzed by using the open source program imageJ, which allows us to track the evolution of individual voids as well as the time dependent distribution of the void population. We are working to correlate these experimental results with the predictions of our finite element calculations to allow us to make insightful choices of adhesives and optimize our bonding processes.


2007 ◽  
Vol 340-341 ◽  
pp. 353-358 ◽  
Author(s):  
M. Loh-Mousavi ◽  
Kenichiro Mori ◽  
K. Hayashi ◽  
Seijiro Maki ◽  
M. Bakhshi

The effect of oscillation of internal pressure on the formability and shape accuracy of the products in a pulsating hydroforming process of T-shaped parts was examined by finite element simulation. The local thinning was prevented by oscillating the internal pressure. The filling ratio of the die cavity and the symmetrical degree of the filling was increased by the oscillation of pressure. The calculated deforming shape and the wall thickness are in good agreement with the experimental ones. It was found that pulsating hydroforming is useful in improving the formability and shape accuracy in the T-shape hydroforming operation.


Author(s):  
K. Logesh ◽  
V.K. Bupesh Raja ◽  
D. Surryaprakash ◽  
R. Desigavinayagam

In this paper the formability of heat treated AA19000 and AA5052 aluminium alloys was studied through experimentation and finite element simulation. The aluminium alloys of 1mm thickness as received and annealed condition were subjected to tensile test and Erichsen cupping test. The experimental results showed that AA5052 possessed better formability than AA19000, due to its magnesium content. The material properties obtained from the tests were validated through simulation using ABAQUS/CAE.


2013 ◽  
Vol 467 ◽  
pp. 332-337
Author(s):  
Xiao Cong He

This paper describes some finite element combinations to analyse the mechanical behaviour of bonded joints. In finite element models five layers of solid elements were used across the adhesive layer in order to increase the accuracy of the results. The finite elements were refined gradually in steps from adherends to adhesive layer. In these models, most of the adherends and adhesive were modeled using solid brick elements but some solid triangular prism elements were used for a smooth transition. Comparisons are performed between different types of first-order element combinations in order to find a suitable model to predict the mechanical behaviour of adhesively bonded joints.


2014 ◽  
Vol 983 ◽  
pp. 226-230
Author(s):  
Zhu Dan ◽  
Zheng Yan

Machining of metals make use of thermal mechanical FEM model. Analysis of nonlinear elastoplastic finite element simulation of milling of 45 # steel material use software of ABAQUS that is finite element simulation technology. ABAQUS software could be carried out on prediction of the milling force. Through finite element analysis, distribution of stress field of workpiece and tool is obtained under the influence of thermal mechanical. The prediction accuracy of the model was validated experimentally and the obtained numerical and experimental results were found in good agreement.


2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Malik Athafarras ◽  
Djati Wibowo Djamari ◽  
Muhamad Rausyan Fikri ◽  
Bentang Arief Budiman ◽  
Farid Triawan ◽  
...  

AbstractThe problem considered in this work is the development of simulation method for simulating car crash which utilizes simple car—impact attenuator model developed in MATLAB. Usually, car crash simulation is done using full finite element simulation which could take hours or days depending on the model size. The purpose of proposed method is to achieve quick results on the car crash simulation. Past works which utilizes simple car—impact attenuator model to simulate car crash use continuous time model and the impact attenuator parameter is obtained from the experimental results. Different from the related works, this work uses discrete time model, and the impact attenuator parameter is obtained from finite element simulation. Therefore, the proposed simulation method is not only achieving quick simulation results but also minimizing the cost and time in obtaining the impact attenuator parameter. The proposed method is suitable for parametric study of impact attenuator.


Sign in / Sign up

Export Citation Format

Share Document