The Effect of the Deformation Method of the Billets on Mechanical Properties of Molybdenum Bars and Wire

2020 ◽  
Vol 864 ◽  
pp. 204-210
Author(s):  
Sergey Gorbatyuk ◽  
Dmitry Efremov ◽  
Sergei Albul ◽  
Natalya Kirillova

A procedure has been developed for calculating the geometric, kinematic and energy-power parameters of helical rolling, which allows a comparative analysis of the processes carried out in stands of various designs. Based on the results of this analysis, a helical rolling mill was designed and manufactured which allows to roll materials with high deformation resistance at high temperatures. The results of the study of the mechanical characteristics of molybdenum bars and wires made by new technology are presented.

2021 ◽  
Vol 410 ◽  
pp. 587-592
Author(s):  
Gulgena D. Shakirova ◽  
Natalya V. Romanova ◽  
Lenar N. Shafigullin

The paper provides the results of the studies on the influence of high temperatures and aggressive media on the performance properties of O-rings having one name but made by different manufacturers. O-rings by supplier No. 1 are made from fluorosilicone rubber, and O-rings by supplier No. 2 are made from fluororubber. The analysis of O-rings showed that the color of O-rings made from fluorosilicone rubber changed and their physical mechanical properties decreased after operation when subjected to G-energy Si-OAT and G-energy SNF coolants. The comparative analysis of TGA curves of O-rings showed that O-rings made from fluororubber were more heat stable than O-rings made from fluorosilicone rubber, i.e. they can withstand higher operating temperatures in an air atmosphere. Fluoroelastomers can recover quickly and are used to manufacture products which should have a high heat resistance during operation and high resistance to aggressive coolants.


2020 ◽  
Vol 109 ◽  
pp. 64-69
Author(s):  
Joanna Wachowicz

Spark Plasma Sintering – new technology for obtaining tool materials. Cemented carbides are a valued tool material used for tools to process, among others, wood-based materials. They are traditionally obtained using high temperatures and long periods. New electric current activated sintering methods make it possible to obtain sinters with good mechanical properties in a short time and low temperature. This paper presents a comparative analysis of conventional and advanced SPS (Spark Plasma Sintering) technology of obtaining cemented carbides.


2019 ◽  
Vol 53 (3) ◽  
pp. 378-385
Author(s):  
Weiqiang Zhang ◽  
Chenchen Xu ◽  
Jishi Geng

Under or after high-temperature treatment, the physical and mechanical characteristics of limestone and marble change significantly. This study seeks to understand the effect of high temperatures on physical and mechanical properties (such as density, porosity, permeability, P-wave velocity, thermal diffusivity, elastic modulus, uniaxial compressive strength, peak strain and Poisson's ratio) of limestone and marble. The results indicate that, from room temperature to 300°C, most of the physical and mechanical indices of limestone and marble change relatively little, except for thermal diffusivity. Above 300°C (especially at 400–600°C), physical and mechanical characteristics change significantly, corresponding to the changes to minerals between 400 and 600°C. These results confirm the important link between physical and mechanical properties and heating temperature, and can provide the basis of theory and reference for related engineering.


Metallurgist ◽  
2018 ◽  
Vol 62 (5-6) ◽  
pp. 568-573
Author(s):  
V. P. Romanenko ◽  
A. V. Fomin ◽  
A. A. Sevast’yanov ◽  
A. N. Nikulin

Author(s):  
Bo Zhang ◽  
Lihui Zhang ◽  
Zhenyu Wang ◽  
Yongfei Li ◽  
Yonghong Cheng ◽  
...  

Cross structures have been well adopted as load bearing structures due to their excellent mechanical properties. A two-dimensional violet phosphorene composed of cross sub-nano rods has been demonstrated to have...


2011 ◽  
Vol 264-265 ◽  
pp. 675-680
Author(s):  
Y.N. Joung ◽  
Chung Gil Kang ◽  
S.M. Lee

For producing high-quality components through a nanoimprint lithographic (NIL) process, it is important to measure quantitative properties about the behavior of polymers with regard to thermal-nano variation. NanoScale indents can be used as cells for molecular electronics and drug delivery and slots for integration into nanodevices; they can be used to detect defects for tailoring the structure and properties. This study evaluates the mechanical characteristics of polymers, such as Polymethylmetacrylate (PMMA) and COP (Cyclo-olefin Polymer), at high temperatures for the manufacture of nano/micro-sized polymers through thermal nanoindentation at high temperatures. At high temperatures, the mechanical properties of polymers exhibit extreme variation. When a polymer is heated, it becomes softer than at room temperature. In this regard, it is especially important to study the mechanical properties of polymers at high temperatures.


2021 ◽  
Vol 2 (1(58)) ◽  
pp. 21-25
Author(s):  
Anastasiia Lokatkina ◽  
Tetiana Prikhna ◽  
Viktor Moshchil ◽  
Pavlo Barvitskyi ◽  
Oleksandra Borimsky ◽  
...  

The object of research is HfB2, ZrB2 and ceramics composition HfB2-30 % SiC and ZrB2-20 % SiC, ZrB2-20 % SiC-4 % Si3N4 obtained under high pressure, their mechanical characteristics before and after heating to high temperatures and temperatures of beginning of melting. The research was conducted in order to create new effective refractory materials for use in the aerospace industry. Therefore, the melting temperatures of sintered materials and the effect of heating on their mechanical properties were also studied. Additives (ZrB2-20 % SiC and HfB2-30 % SiC) although led to a decrease in specific gravity. But increased hardness (by 17 % and 46 % in the case of ZrB2 and HfB2, respectively) and fracture toughness (by 40 % and 21 % in the case of ZrB2 and HfB2, respectively). However, significantly reduced the onset of melting temperature in vacuum to 2150–2160 °C. Materials sintered from ZrB2 and HfB2 was not melted after heating to 2970 °C. After heating to a melting point of 2150–2160 °C (in the case of materials with additives) and to temperatures of 2970 °C (in the case of materials sintered with ZrB2 or HfB2), the hardness and fracture toughness decreased. Thus, the hardness of the material prepared from ZrB2 decreased by 19 % and its fracture toughness – by 18 %, and of that prepared from ZrB2–20 % SiC – by 46 % and 32 %, respectively. The hardness of the material prepared from HfB2 decreased by 46 %, its fracture toughness – by 55 %, and of that prepared from HfB2-30 % SiC, after heating decreased by 40 %, but its fracture toughness increased by 15 %. The sintered HfB2 (with a density of 10.4 g/cm3) before heating showed a hardness of HV(9.8 N)=21.27±0.84 GPa, HV(49 N)=19.29±1.34 and HV(98 N)=19.17±0.5, and fracture toughness K1C(9.8 N)=0.47 MH·m0.5, and ZrB2 with a density of 6.2 g/cm3 was characterized by HV(9.8 N)=17.66±0.60 GPa, HV(49 N)=15.25±1.22 GPa and HV(98 N)=15.32±0.36 GPa, K1C(9.8 N)=4.3 MH·m0.5. Material sintered with HfB2-30 % SiC (density 6.21 g/cm3) had Hv(9.8 N)=38.1±1.4 GPa, HV(49 N)=27.7±2.8 GPa, and K1C(9.8 N)=8.1 MH·m0.5, K1C(49 H)=6.8 MH·m0.5. The sintered with ZrB2-20 % SiC material had density of 5.04 g/cm3, HV(9.8 N)=24.2±1.9 GPa, HV(49 N)=16.7±2.8 GPa, K1C(49 H)=7.1 MH·m0.5. The SiC addition to the initial mixture significantly reduces the elasticity of the materials.


Alloy Digest ◽  
2008 ◽  
Vol 57 (1) ◽  

Abstract CF8C-Plus is an austenitic casting grade similar to CF8C, but with improved chemistry to stay fully austenitic at high temperatures and thus retain good mechanical properties. This datasheet provides information on composition, microstructureand tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on casting and joining. Filing Code: SS-1006. Producer or source: Caterpillar Technical Center.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


Sign in / Sign up

Export Citation Format

Share Document