Microstructural Evolution and Tensile Strength of Laser-Welded Butt Joints of Ultra-High Strength Steels: Low and High Alloy Steels

2021 ◽  
Vol 883 ◽  
pp. 250-257
Author(s):  
Mikko Hietala ◽  
Atef Hamada ◽  
Markku Keskitalo ◽  
Matias Jaskari ◽  
Jani Kumpula ◽  
...  

The present study is focused on joining two ultra-high strength steels plates of 3 mm thickness using laser-welding. Abrasion resistant steel with martensitic structure, tensile strength (Rm) ≥ 2 GPa, and cold-deformed austenitic stainless steel, Rm 1.3 GPa, were used for the dissimilar butt joints. Two different laser energy inputs, 160 and 320 J/mm, were presented during welding. The weld morphology and microstructural evolution of the fusion zone were recorded using optical microscopy and electron back scattering diffraction (EBSD), respectively. The mechanical properties of the dissimilar joints were evaluated by hardness measurements and tensile tests. It was found that fusion zone has undergone a change in morphology and microstructure during welding depending upon the energy input. Analysis of the microstructural evolution in the fusion zone by EBSD examination showed that the presence of a mixture of small austenite grains in a matrix of martensite. The changes in hardness profiles and tensile strength under the experimental parameters were further reported.

2014 ◽  
Vol 1063 ◽  
pp. 194-197
Author(s):  
Kai Wang ◽  
Zhi Bin Wang ◽  
Pei Xing Liu ◽  
Yi Sheng Zhang

Due to high temperature and inevitable contact with air, strong oxidation and decarburization of the bare steel exist in hot stamping of ultra-high strength steels. Martensitic stainless steel could be a potential solution with its corrosion resistance and high strength. In this paper, the influences of austenitization temperature (850 to 1000 °C) and time (3 to 10 min) on final properties of 410 martensitic stainless steel were investigated, to obtain an ultra-high strength up to 1500MPa. The hot stamping of 410 steel is simulated by compression tests with a flat die. Mechanical properties of blanks after hot stamping process were detected by tensile tests. Results show that the final strength of 410 steel increases and the plasticity decreases, with the increase of austenitization temperature and time. After austenitization at 1000 °C for 5-10 min, an ultimate tensile strength up to 1500MPa is obtained with a martensite dominated microstructure.


2012 ◽  
Vol 1373 ◽  
Author(s):  
I. Mejía ◽  
A. García de la Rosa ◽  
A. Bedolla-Jacuinde ◽  
J.M. Cabrera

ABSTRACTThe aim of this research work is to study the effect of boron addition on mechanical properties and microstructure of a new family of low carbon NiCrVCu advanced high strength steels (AHSS). Experimental steels are thermo-mechanically processed (TMP) (hot-rolled+quenched). Results show that the microstructure of these steels contains bainite and martensite, predominantly, which nucleate along prior austenite grain boundaries (GB). On the other hand, tensile tests reveal that the TMP steels have YS (0.2% offset) of 978 MPa, UTS of 1140 MPa and EL of 18%. On the basis of exhibited microstructure and mechanical properties, these experimental steels are classified as bainitic-martensitic complex phase (CP) advanced ultra-high strength steels (UHSS).


2020 ◽  
Vol 65 (3) ◽  
pp. 113-123
Author(s):  
Miloš Mičian ◽  
Milan Maronek ◽  
Radoslav Konar ◽  
Daniel Harmaniak ◽  
Mihal Jambor ◽  
...  

The TMCP (thermo-mechanically controlled processed) steels belong to the group of ultra-high strength steels, which exhibit exceptional combination of high tensile and yield strength, toughness and ductility. These steels were introduced in the heavy machinery constructions, such as heavy mobile cranes, chassis trucks and other to reduce their weight, what increases their loading capacity and ecology of transport. The high tensile and yield strength of this type of steels is obtained by the combination of the chemical composition, heat treatment and the mechanical processing. However, the heat input into the material during the welding significantly affect properties of the steel and the whole joint. In this paper are presented results of mechanical properties evaluation and structural analysis of the welds of the thin sheets made of the S960MC steel, which were welded using the GMAW procedure. The microstructural evaluation referred significant changes in the HAZ. This area contains the three sub-zones, coarse grain (CGHAZ), fine grain (FGHAZ) and intercritical zone (ICHAZ). Analysis of microhardness and the tensile tests results showed, that ICHAZ is the most critical area of the whole welded joint.


Author(s):  
Heinrich Günter ◽  
Gerson Meschut

AbstractSingle-step joining of dissimilar material combinations between ultra-high-strength steels and high-strength aluminium alloys with sufficient mechanical joint properties by using conventional resistance spot welding equipment has not been reported yet. In this research paper, a novel single-step joining technology, so-called self-penetrating resistance element welding, is introduced. First, the motivation for this novel joining technology, the state of the art in joining, and the process characteristics are presented. In the results section, the welding rivet geometry is first determined using forming simulations and validated by head tensile tests. Followed by the description of the welding process and its characteristics, the mechanical joint properties are reported. The results show that a numerically optimised welding rivet geometry can guarantee sufficient joint strength. By this welding rivet geometry, a thermally assisted penetration of aluminium and therefore welding to steel is possible with and without adhesive. Furthermore, it is shown that the welding process can be designed by means of simulations. Finally, the shear tensile tests prove that an overall sufficient joint strength is ensured.


Alloy Digest ◽  
2010 ◽  
Vol 59 (12) ◽  

Abstract Dogal 600 and 800 DP are high-strength steels with a microstructure that contains ferrite, which is soft and formable, and martensite, which is hard and contributes to the strength of the steel. The designation relates to the lowest tensile strength. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, joining, and surface treatment. Filing Code: CS-160. Producer or source: SSAB Swedish Steel Inc. and SSAB Swedish Steel.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1136
Author(s):  
Marcel Carpio ◽  
Jessica Calvo ◽  
Omar García ◽  
Juan Pablo Pedraza ◽  
José María Cabrera

Designing a new family of advanced high-strength steels (AHSSs) to develop automotive parts that cover early industry needs is the aim of many investigations. One of the candidates in the 3rd family of AHSS are the quenching and partitioning (QP) steels. These steels display an excellent relationship between strength and formability, making them able to fulfill the requirements of safety, while reducing automobile weight to enhance the performance during service. The main attribute of QP steels is the TRIP effect that retained austenite possesses, which allows a significant energy absorption during deformation. The present study is focused on evaluating some process parameters, especially the partitioning temperature, in the microstructures and mechanical properties attained during a QP process. An experimental steel (0.2C-3.5Mn-1.5Si (wt%)) was selected and heated according to the theoretical optimum quenching temperature. For this purpose, heat treatments in a quenching dilatometry and further microstructural and mechanical characterization were carried out by SEM, XRD, EBSD, and hardness and tensile tests, respectively. The samples showed a significant increment in the retained austenite at an increasing partitioning temperature, but with strong penalization on the final ductility due to the large amount of fresh martensite obtained as well.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3943
Author(s):  
Hana Šebestová ◽  
Petr Horník ◽  
Šárka Mikmeková ◽  
Libor Mrňa ◽  
Pavel Doležal ◽  
...  

The presence of Al-Si coating on 22MnB5 leads to the formation of large ferritic bands in the dominantly martensitic microstructure of butt laser welds. Rapid cooling of laser weld metal is responsible for insufficient diffusion of coating elements into the steel and incomplete homogenization of weld fusion zone. The Al-rich regions promote the formation of ferritic solid solution. Soft ferritic bands cause weld joint weakening. Laser welds reached only 64% of base metal's ultimate tensile strength, and they always fractured in the fusion zone during the tensile tests. We implemented hybrid laser-TIG welding technology to reduce weld cooling rate by the addition of heat of the arc. The effect of arc current on weld microstructure and mechanical properties was investigated. Thanks to the slower cooling, the large ferritic bands were eliminated. The hybrid welds reached greater ultimate tensile strength compared to laser welds. The location of the fracture moved from the fusion zone to a tempered heat-affected zone characterized by a drop in microhardness. The minimum of microhardness was independent of heat input in this region.


Sign in / Sign up

Export Citation Format

Share Document