Optimization of Green Synthesis Approach of Silver Nanoparticles Using Indonesian Wild Honey

2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Muthusamy Govarthanan ◽  
Min Cho ◽  
Jung-Hee Park ◽  
Jum-Suk Jang ◽  
Young-Joo Yi ◽  
...  

Agroindustrial byproduct mediated green synthesis of silver nanoparticles was carried out using cottonseed oilcake (CSOC) extract. The aqueous silver nitrate formed stable silver nanoparticles with CSOC extract as a reducing agent for Ag+to Ag0. The synthesized nanoparticles were characterized using energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) techniques. The synthesized silver nanoparticles (AgNPs) (4 mM) significantly inhibited the growth of phytopathogens,Pseudomonas syringaepv.actinidiaeandRalstonia solanacearum. Further, cytotoxicity of AgNPs was evaluated using rat splenocyte cells. The splenocyte viability was decreased according to the increasing concentration of AgNPs and 90% of cell death was observed at 100 μg/mL.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2018 ◽  
Vol 769 ◽  
pp. 114-119 ◽  
Author(s):  
Artur A. Sivkov ◽  
Artur Nassyrbayev ◽  
Maksim Gukov

In this work, the powder of nanoscale cubic SiC was obtained by the plasmodynamic synthesis in a coaxial magnetoplasma accelerator (CMPA) with a graphite central electrode and an accelerator channel. The synthesis method allows obtaining a product with a high content of nanoscale cubic silicon carbide. The work is aimed to study the influence of the precursor’s ratio on the product. The synthesized products were analyzed by X-ray diffraction and transmission electron microscopy.


2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.


2005 ◽  
Vol 887 ◽  
Author(s):  
Zhili Xiao ◽  
Yew-San Hor ◽  
Ulrich Welp ◽  
Yasuo Ito ◽  
Umesh Patel ◽  
...  

ABSTRACTThe synthesis of nanoscale superconductors with controlled geometries is extremely challenging. In this paper we present results on synthesis and characterization of one-dimensional (1D) NbSe2 superconducting nanowires/nanoribbons. Our synthesis approach includes the synthesis of 1D NbSe3 nanostructure precursors followed by nondestructive and controlled adjustment of the Se composition to formulate NbSe2. The morphology, composition and crystallinity of the synthesized 1D NbSe2 nanostructures were analyzed with scanning electron microscopy, x-ray diffraction and transmission electron microscopy. Transport measurements were carried out to explore the electronic properties of these confined superconducting nanostructures.


2021 ◽  
Vol 18 (4) ◽  
pp. 691-701
Author(s):  
Faruk Arodiya ◽  
Chirag Makvana ◽  
Kokila Parmar

Generally, synthesis and encapsulation process improve therapeutic value of nano encapsulated drugs. The silver nanoparticles (AgNPs) biosynthesized from Ziziphus nummularia leaves and encapsulated with polyvinyl pyrrolidone (PVP) polymer as antibacterial agents, due to its high bioavailability, better encapsulation and less toxic properties. The nanoparticles (AgNPs) biosynthesized from Ziziphus nummularia leaves and capped with polyvinyl pyrrolidone (PVP) polymer, The acquired AgNPs and polymeric functionalized AgNPs were fully characterised by the UV- Visible spectroscopy , Transmission electron microscopy (TEM), X-Ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy (FTIR).The crystalline Ag NPs and Polymer Functionalized AgNPs have a face-centered cubic structure with an average size of 9.20 nm, according to X-ray Diffraction spectroscopy. Fourier Transform Infrared spectroscopy revealed that biomolecules such as proteins are incapable of reducing metal ions and the formation of an encapsulating layer in terms of metal ions. High-Resolution transmission electron microscopy revealed that Polymer functionalized AgNPs ranged in size of 10 nm. AgNPs and Polymer functionalized AgNPs showed effective antimicrobial and antioxidant activity. The biosynthesized monodisperse silver nanoparticles and encapsulated silver nanoparticles demonstrated better antimicrobial and antioxidant activity which can be used in various biomedical applications.


Author(s):  
M. Prem Nawaz ◽  
A. Afroos Banu ◽  
S. Raja Mohamed ◽  
M. Palanivelu ◽  
A. Ayeshamariam

In this study, green synthesis of silver nanoparticles (Ag NPs) has done using traditional herbal namely Cassia auriculata extract by the simple Green synthesis method. The synthesized Ag nanoparticles were studied by the characterization techniques includes X-ray diffraction (XRD) crystallography for nature of crystalline with relevant parameters, Transmission electron microscopy (TEM) for particle size as well as the SAED patterns for amorphous, crystalline or polynanocrystalline and Photoluminescence analysis were carried out for the prepared NPs. Ag NPs were fabricated utilizing Phyto-aquatic extract of Cassia auriculata which act as a reducing agent, and it was converted into a precursor solution to coat on cotton fabrics for antibacterial applications. To further, its performance on anticancer application was studied for Michigan Cancer Foundation-7 (MCF-7) line breast cancer.


2018 ◽  
Vol 83 (5) ◽  
pp. 515-538 ◽  
Author(s):  
Andreia Corciova ◽  
Bianca Ivanescu

Nanotechnology is one of the most studied domains, and nanoparticle synthesis, especially of silver nanoparticles, has gained special importance due to their properties, biocompatibility and applications. Today, the processes of nanoparticles synthesis tend toward the development of inexpensive, simple, non-toxic and environmentally friendly methods. Thus, the use of plants in the synthesis of silver nanoparticles has attracted considerable interest because biomolecules can act as both reducing and stabilizing agents. This survey aims at discussing the conditions for obtaining silver nanoparticles using plants and their characterization by several methods, such as FTIR and UV?Vis spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. In addition, it examines some of the most common biological uses of silver nanoparticles: antibacterial, antioxidant and cytotoxic.


Author(s):  
T. A. Ihum ◽  
C. C. Iheukwumere ◽  
I. O. Ogbonna ◽  
G. M. Gberikon

This study was carried out to determine the antimicrobial activity of silver nanoparticles synthesized using goat milk against pathogens of selected vegetables. Synthesis of Silver nanoparticles was done using Goat milk, and characterized using Ultra Violet-Visible absorption spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Maximum absorbance of Goat milk synthesized AgNPs was observed at 417 nm, with FTIR peaks at 3455 cm−1, 1628 cm−1, 1402 cm−1, 1081 cm−1 and 517 cm−1, indicating that proteins in Goat milk (GM) were the capping and stabilization molecules involved the synthesis of AgNPs. Transmission electron microscopy analysis showed that the biosynthesized particles were spherical in shape having a size of 10-100 nm, X- ray diffraction (XRD) pattern agreed with the crystalline nature and face-centered cubic phase of AgNPs. Evaluation of the antimicrobial activity of AgNPs synthesized using GM against the indicator strains (Staphylococcus aureus CIP 9973, Pectobacterium carotovorum Pec1, Enterobacter cloacae AS10, Klebsiella aerogenes OFM28, Proteus mirabilis UPMSD3 and Escherichia coli 2013C-3342) isolated from selected vegetables, was carried out using the Agar diffusion assay at different concentrations of 25, 75 and 100 µl/ml. The present study demonstrated that the AgNPs synthesized using Goat milk have potent biological activities, which can find applications in diverse areas.


Sign in / Sign up

Export Citation Format

Share Document