A Facile Method for the Synthesis of Silver Nanoparticles in the Presence of Sodium Phosphate

2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.

2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


2011 ◽  
Vol 356-360 ◽  
pp. 524-528 ◽  
Author(s):  
Chun Ling Yu ◽  
Rui Xue Wu ◽  
Ying Huan Fu ◽  
Xiao Li Dong ◽  
Hong Chao Ma

A polyaniline supported titanium dioxide photocatalyst was prepared by an impregnation-hydrothermal process and characterized by powder X-ray diffraction, transmission electron microscopy and UV-visible spectroscopy. It was found that the TiO2 nanoparticles were well dispersed on the surface of the polyaniline and the photocatalyst has a stronger absorption compared with that of pure TiO2 over the whole of the visible spectrum. The photocatalyst exhibited higher photocatalytic activity than pure TiO2 for the photodegradation of solutions of the anthraquinone dye, reactive brilliant blue KN-R, under visible light irradiation.


2018 ◽  
Vol 83 (5) ◽  
pp. 515-538 ◽  
Author(s):  
Andreia Corciova ◽  
Bianca Ivanescu

Nanotechnology is one of the most studied domains, and nanoparticle synthesis, especially of silver nanoparticles, has gained special importance due to their properties, biocompatibility and applications. Today, the processes of nanoparticles synthesis tend toward the development of inexpensive, simple, non-toxic and environmentally friendly methods. Thus, the use of plants in the synthesis of silver nanoparticles has attracted considerable interest because biomolecules can act as both reducing and stabilizing agents. This survey aims at discussing the conditions for obtaining silver nanoparticles using plants and their characterization by several methods, such as FTIR and UV?Vis spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. In addition, it examines some of the most common biological uses of silver nanoparticles: antibacterial, antioxidant and cytotoxic.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ravishankar Bhat ◽  
Raghunandan Deshpande ◽  
Sharanabasava V. Ganachari ◽  
Do Sung Huh ◽  
A. Venkataraman

This is a report on photo-irradiated extracellular synthesis of silver nanoparticles using the aqueous extract of edible oyster mushroom (Pleurotus florida) as a reducing agent. The appearance, size, and shape of the silver nanoparticles are understood by UV-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The X-ray diffraction studies, energy dispersive X-ray analysis indicate that particles are crystalline in nature. Fourier transform infrared spectroscopy analysis revealed that the nanoparticles are covered with biomoieties on their surface. As can be seen from our studies, the biofunctionalized silver nanoparticles thus produced have shown admirable antimicrobial effects, and the synthetic procedure involved is eco-friendly and simple, and hence high range production of the same can be considered for using them in many pharmaceutical applications.


2021 ◽  
pp. 1-13
Author(s):  
Iqbal Wadan ◽  
Haroon Khan ◽  
Kamran Tahir ◽  
Muhammad Khalid Khan ◽  
Barkat Ali Khan

In current work, silver nanoparticles (AgNPs) were prepared by a rapid biogenic technique “Green method” utilizing root extract of Olea ferruginea. The synthesized nanoparticles were characterized for UV visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning electron microscopy (SEM), High Resolution Transmission Electron Microscopy Studies (HRTEM) and biological assays. UV visible absorption spectroscopy confirms the formation of AgNPs by giving Surface Plasmon Resonance (SPR) peak at 430 nm. FTIR study showed occurrence of various functional groups present in root extract of Olea ferruginea. X-ray diffraction analysis determined the crystalline nature of bio-fabricated silver nanoparticles. The elemental composition of green made silver nanoparticles was studied through Energy Dispersive Spectroscopy (EDS) analysis. SEM & HRTEM study revealed the size, shape, surface morphology & dispersion level of molecules. The biologically synthesized AgNPs showed high antimicrobial, antifungal and antioxidant activity. The AgNPs are observed to be an excellent catalyst on reduction of hazardous dyes, which is confirmed by a decrease in absorbance of maximum values.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


Author(s):  
Robert Lotha ◽  
Aravind Sivasubramanian ◽  
Meenakshi Sundaram Muthuraman

Objective: The present study was aimed at the biosynthesis of silver nanoparticles (AgNPs) using aqueous extract of Euphorbia cyathophora leavesand testing their anticancer potential using HT-29 cell line model.Methods: Green synthesis of silver nanoparticles was obtained with the aqueous extract of E. cyathophora. The synthesized nanoparticles wereconfirmed initially by ultraviolet-visible spectroscopy. Further, scanning electron microscopy, transmission electron microscopy, and X-Ray diffractionstudies also ensured the presence of silver nanoparticles. Zeta potential studies revealed the stability of the silver nanoparticles.Results: Antioxidant and anticancer studies of the nanoparticles against HT-29 cell line exhibited remarkable results.Conclusion: This ensures that the synthesized nanoparticles play an important role in medicinal biology.


2012 ◽  
Vol 585 ◽  
pp. 144-148
Author(s):  
Poushpi Dwivedi ◽  
S.S. Narvi ◽  
R.P. Tewari

In this nanoregime attempts to bring forth nanoparticles and nanomaterials are myriads, with there interesting and demanding applications in almost every field. Today the field of nanoscience has bloomed with the confluence of nanotechnology with material science, biology, biotechnology and medicine and the need for nanotechnology will only increase as miniaturization becomes extremely important in various arrays of life. Since time immemorial silver nanoparticles have been extensively used for hygienic and healing purposes, and even until most recently, it has indispensible vital role especially in the biomedical arena. Thus in an attempt to generate silver nanoparticles employing green, environmentally benign route, we have designed to converge mythology with technology, with the mystical production of silver nanoparticles, enabled by the blueberry beads of the plant Elaeocarpus granitrus Roxb., the Rudraksha. This non-degradable bead does not disintegrate, but retains the potentiality, even after unlimited production of silver nanoparticles, assisting infinite times. The extremely cost-efficient nanoparticles thus developed in a superiorly efficient manner were characterized through different techniques; like UV/visible spectroscopy, PL spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and nanoparticle size analysis.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840044
Author(s):  
Aditya Dalal ◽  
Animesh Mandal ◽  
Shubhada Adhi ◽  
Kiran Adhi

Aluminum (0.5 at.%)-doped ZnO (AZO) thin films were deposited by pulsed laser deposition technique (PLD) in oxygen ambient of 10[Formula: see text] Torr. The deposited thin films were characterized by x-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and uv–visible spectroscopy (UV–vis). Next, graphene oxide (GO) was synthesized by Hummers method and was characterized by XRD, UV–vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Thereafter, GO solution was drop-casted on AZO thin films. These films were then characterized by Raman Spectroscopy, UV–vis spectroscopy and PL. Attempt is being made to comprehend the modifications in properties brought about by integration.


Sign in / Sign up

Export Citation Format

Share Document