Atomic Force Microscopy of the Local Electrical Properties of Bilayer Polyaniline-Polystyrene/P(VDF-TrFE) Composite

2021 ◽  
Vol 899 ◽  
pp. 506-511
Author(s):  
Artem V. Budaev ◽  
Ivanna N. Melnikovich ◽  
Vasily E. Melnichenko ◽  
Nikita A. Emelianov

Atomic force microscopy techniques (conductive-AFM, I-V spectroscopy and PFM) were used for characterisation of the local electrical properties of bilayer polyaniline-polystyrene/P(VDF-TrFE) polymer nanocomposite. Observed hysteresis of current-voltage characteristics confirms its memristive properties. It was caused by the influence of the ferroelectric polarization of P(VDF-TrFE) layer, the domain structure of which was visualised by piezoelectric force microscopy on the transport of charge carriers at the interface.

2020 ◽  
pp. 94-98
Author(s):  
N. A. Davletkildeev ◽  

Thin layers of polyaniline on the surface of highly oriented pyrolytic graphite are obtained by in-situ chemical oxidative polymerization of aniline. The current-voltage characteristics of the tip/polyaniline/graphite contact, which have a form characteristic of tunnel contacts, have been measured by the method of conducting atomic force microscopy. By modeling the current-voltage characteristics using the Simmons model, the width of the potential barrier is determined, which for the investigated heterojunction is 0,5 nm


2019 ◽  
Vol 61 (4) ◽  
pp. 773
Author(s):  
А.А. Базанова ◽  
В.Н. Петров ◽  
А.Н. Алешин

AbstractThe electrical properties of composite films based on conductive polymer PEDOT: PSS, graphene oxide (GO), and titanium dioxide nanoparticles (TiO_2) (PEDOT: PSS– TiO_2 and GO–TiO_2) used as contact layers of organic and perovskite photovoltaic structures have been studied. As a result of the study of morphology by atomic force microscopy, it was found that the PEDOT: PSS–TiO_2 and GO–TiO_2 films have a globular structure with a grain size of ~200–300 nm. The current–voltage characteristics of the PEDOT: PSS–TiO_2 and GO–TiO_2 films are measured in the temperature range of 80–300 K, the dependences of the resistivity versus temperature, ρ( T ), which have an activation character, are obtained. It is established that as the temperature decreases, the ρ( T ) dependences show a transition from large values of the activation energy (570 meV and 329 meV) to lower values (25 meV and 2.2 meV) for the PEDOT: PSS–TiO_2 and GO–TiO_2 films, respectively. The mechanisms of transport of charge carriers in the materials studied are discussed.


2002 ◽  
Vol 737 ◽  
Author(s):  
Ichiro Tanaka ◽  
Eri Kawasaki ◽  
O. Ohtsuki ◽  
K. Uno ◽  
M. Hara ◽  
...  

ABSTRACTWe have investigated current-voltage characteristics of individual CdSe colloidal nanodots by conductive-tip atomic force microscopy (AFM). The colloidal nanodots were spun-coat and scattered on a self-assembled monolayer of thiophene molecules formed on Au (111) surfaces for single dot measurements. A thin SiO2 layer was deposited on the sample surface in order to prevent the dots being moved by the tip during measurement. We imaged the topography of isolated single dots by AFM operated in contact mode, and measured current-voltage characteristics with the conductive tip positioned on single dots; large conductivity changes which suggest resonant tunneling through a quantized energy level in the dot was observed even at room temperature.


2019 ◽  
Vol 10 ◽  
pp. 617-633 ◽  
Author(s):  
Aaron Mascaro ◽  
Yoichi Miyahara ◽  
Tyler Enright ◽  
Omur E Dagdeviren ◽  
Peter Grütter

Recently, there have been a number of variations of electrostatic force microscopy (EFM) that allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in atomic force microscopy. Here, we review in detail several time-resolved EFM techniques based on non-contact atomic force microscopy, elaborating on their specific limitations and challenges. We also introduce a new experimental technique that can resolve time-varying signals well below the oscillation period of the cantilever and compare and contrast it with those previously established.


Sign in / Sign up

Export Citation Format

Share Document