X-Ray Topography Characterization of Large Diameter AlN Single Crystal Substrates

2020 ◽  
Vol 1004 ◽  
pp. 63-68
Author(s):  
Rafael Dalmau ◽  
Jeffrey Britt ◽  
Hao Yang Fang ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
...  

Large diameter aluminum nitride (AlN) substrates, up to 50 mm, were manufactured from single crystal boules grown by physical vapor transport (PVT). Synchrotron-based x-ray topography (XRT) was used to characterize the density, distribution, and type of dislocations. White beam topography images acquired in transmission geometry were used to analyze basal plane dislocations (BPDs) and low angle grain boundaries (LAGBs), while monochromatic beam, grazing incidence images were used to analyze threading dislocations. Boule diameter expansion, without the introduction of LAGBs around the periphery, was shown. A 48 mm substrate with a uniform threading dislocation density below 7.0 x 102 cm-2 and a BPD of 0 cm-2, the lowest dislocation densities reported to date for an AlN single crystal this size, was demonstrated.

2013 ◽  
Vol 1494 ◽  
pp. 121-126 ◽  
Author(s):  
Tianyi Zhou ◽  
Balaji Raghothamachar ◽  
Fangzhen Wu ◽  
Michael Dudley

ABSTRACTZnO single crystal substrates grown by the hydrothermal method have been characterized by grazing incidence X-ray topography using both monochromaticand whitesynchrotron X ray beams.11$\bar 2$4 reflection wasrecorded from the (0001) wafers and the different contrast patterns produced by different threading defects were noted. To uniquely identify the Burgers vectors of these threading dislocation defects, we use raytracingsimulation to compare with observed defect contrast. Our studies showed that threading screw dislocations are not commonly observed.Most threading edge dislocationshavetheBurgers vector of1⁄3[2$\bar 1$$\bar 1$0] or1⁄3[12$\bar 2$10]and a density of 2.88×104/cm2.


1998 ◽  
Vol 535 ◽  
Author(s):  
P. J. Taylor ◽  
W.A. Jesser ◽  
G. Simonis ◽  
W. Chang ◽  
M. Lara-Taysing ◽  
...  

AbstractThe growth of reduced dislocation density GaAs/Si is performed by a novel two-step technique where the first epitaxy step takes place at 75° C and the second is performed at 580° C. The initial deposition is single crystal, continuous, and planar such that there is no contribution to the dislocation density from Volmer-Weber island coalescence and no trapping of dislocations in pinholes. Using this new growth technique, a reduced dislocation density the order of 106/cm2 was obtained. The improved crystallinity is indicated by the more narrow x-ray full-width-at-half-maximum (FWHM) value of 110 arcseconds. GaAs p-i-n diodes were grown on the reduced dislocation density GaAs/Si and it was found that the resistivity of the intrinsic region for the heteroepitaxial diodes was similar to homoepitaxial ones for small mesa sizes.


Author(s):  
И.Д. Лошкарев ◽  
А.П. Василенко ◽  
Е.М. Труханов ◽  
А.В. Колесников ◽  
М.О. Петрушков ◽  
...  

AbstractAn approach to instant testing of epitaxial films with a sharp decrease in the threading dislocation density is proposed. High-resolution X-ray diffractometry, including reciprocal space mapping, has been used. The structure of GaAs/Si(001) heterosystems with low-temperature GaAs layers has been analyzed. A decrease in the density of threading dislocations in the GaAs film with the formation of a small-angle boundary has been detected.


Author(s):  
R.A. Herring ◽  
P.N. Uppal ◽  
S.P. Svensson ◽  
J.S. Ahearn

A high density of interfacial dislocations are needed at the GaAs/Si interface to alleviate the 4% lattice mismatch between GaAs and Si. Some remnant dislocations thread through the epilayer and follow the growth interface. Current growth methods are not able to obtain acceptable threading dislocation densities (104 – 105) for devices. Many methods can be used to reduce the number of threading dislocations which include misorienting the substrate to enhance the slip of dislocations on specific [110]{111} planes, annealing during and after growth, and adding strained layer superlattices (SLS's) to block dislocations. Conventional TEM (CTEM), performed using a JEM 100c, has been used to characterize threading dislocations in the epilayer of a GaAs/Si material where in situ thermal annealing and SLS's force dislocation reactions and thereby reduce the threading dislocation density. Using TEM we have viewed dislocations under many two-beam diffraction conditions and with the help of a stereogram have determined their Burgers vectors (b), line directions (u) and habit planes (R).


1994 ◽  
Vol 356 ◽  
Author(s):  
C. C. R. Watson ◽  
K. Durose ◽  
E. O’Keefe ◽  
J. M. Hudson ◽  
B. K. Tanner

Epilayers of LPE Cdo.24Hgo.76Te grown on (111)B CdTe and Cdi-xZnxTe substrates have been examined by defect etching and triple axis x-ray diffraction. Defect etching of bevelled layers has shown the threading dislocation density to fall with increasing distance from the heterointerface, for distances <6μm. In thicker regions however a constant ‘background’ dislocation density is observed. Background dislocation densities of ∼ 3 x 105cm-2 and 9 x 104cm-2 have been measured for layers grown on CdTe and Cdo.96Zn0.04Te respectively, this is compared with a substrate dislocation density of ∼ 3 x 104cm-2 measured in both types of substrates. The increase in the dislocation density within the epilayers compared with the corresponding substrate is discussed. An explanation is also given for the displacement of the peak dislocation density, from the interface to within the layer, observed in the Cd0.76Hg0.24Te / Cd0.96Zn0.04Te system.


2013 ◽  
Vol 740-742 ◽  
pp. 73-76 ◽  
Author(s):  
Motohisa Kado ◽  
Hironori Daikoku ◽  
Hidemitsu Sakamoto ◽  
Hiroshi Suzuki ◽  
Takeshi Bessho ◽  
...  

In this study, we have investigated the rate-limiting process of 4H-SiC solution growth using Si-Cr based melt, and have tried high-speed growth. It is revealed that the rate-limiting process of SiC growth under our experimental condition is interface kinetics, which can be controlled by such factors as temperature and supersaturation of carbon. By enhancing the interface kinetics, SiC crystal has been grown at a high rate of 2 mm/h. The FWHM values of X-ray rocking curves and threading dislocation density of the grown crystals are almost the same as those of seed crystal. Possibility of high-speed and high-quality growth of 4H-SiC has been indicated.


2018 ◽  
Vol 74 (5) ◽  
pp. 545-552
Author(s):  
K. V. Nikolaev ◽  
I. A. Makhotkin ◽  
S. N. Yakunin ◽  
R. W. E. van de Kruijs ◽  
M. A. Chuev ◽  
...  

Grazing-incidence X-ray diffraction (GID) is a well known technique for the characterization of crystal surfaces. A theoretical study has been performed of the sensitivity of GID to the structure of a crystal surface and distorted nanometre-thin surface layers. To simulate GID from crystals that have a complex subsurface structure, a matrix formalism of the dynamical diffraction theory has been applied. It has been found that the azimuthal rocking curves of a crystal that has a distorted subsurface, measured over a wide angular range, show asymmetric thickness oscillations with two distinguishable sets of frequencies: one corresponding to the diffraction in the single-crystal subsurface layer and the second corresponding to the diffraction in the single-crystal substrate. Therefore, azimuthal rocking curves allow characterization of the subsurface structure of a single crystal. Furthermore, thickness oscillations induced by evanescent diffraction modulate the specular reflection intensity, showing high-intensity modulations. This will potentially allow implementation of subsurface crystal characterization using, for instance, a laboratory-scale X-ray diffractometer.


2015 ◽  
Vol 212 (3) ◽  
pp. 523-528 ◽  
Author(s):  
Philipp Hönicke ◽  
Blanka Detlefs ◽  
Matthias Müller ◽  
Erik Darlatt ◽  
Emmanuel Nolot ◽  
...  

1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document