The Effect of the Sheet Metal Postures on the Forming Thickness Based on the Finite Element Analysis

2021 ◽  
Vol 1018 ◽  
pp. 131-135
Author(s):  
Hu Zhu ◽  
Yang Wang ◽  
Dong Won Jung

In order to analysis the effect of the sheet metal postures on the forming thickness, the horizontal sheet posture, the multidirectional sheet postures with the inclined angle of , and the multidirectional sheet postures obtained after optimization were respectively used for comparative analysis through the numerical simulation against the same model. The result shows that the optimized multidirectional sheet metal postures can reduce the overall thickness difference of the formed part and realize the thickness uniformity.

2007 ◽  
Vol 561-565 ◽  
pp. 1995-1998
Author(s):  
Ming He Chen ◽  
J.H. Li ◽  
Lin Gao ◽  
Dun Wen Zuo ◽  
Min Wang

In order to solve the problem existed in the numerical simulation of sheet metal forming for its use the strain-based forming limit diagram as criterion, which has the flaw of dependence on the strain paths, this paper develops the finite element analysis program based on the stress forming limit criterion applicable to the blank plastic forming technique, which follows the stress-strain transformation relationship when the sheet metal is undergoing plastic deformation, chooses Hill’s quadratic normal anisotropic criterion as computational model and selects the commercial finite element code Dynaform as its development environment. Also it be analyzed the finite element numerical simulation results of two deep drawing parts by the developed program module and realizes the prediction of sheet metal forming limit adopting the FLSD as criterion. The stress-based forming limit criterion for the developed program provides a new means to analyze the forming limit for the multistage sheet metal forming.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 202
Author(s):  
Gui Li ◽  
Xiaoyu Long

Advanced high strength galvanized steel sheet has been one of the dominant materials of modern automotive panels because of its outstanding mechanical properties and corrosion resistance. The zinc coating thickness of hot dip galvanized steel sheet is only about 10–20 μm, which is a discarded object on the macro level. However, it is obvious to damage and impact on stamping performance. Therefore, this paper takes zinc coating as the research object and builds its mechanical constitutive model based on a nano-indentation test and dimensional analysis theory. We separated the zinc coating from the galvanized steel substrate and constructed a sandwich material model by introducing a cohesive layer to connect the zinc coating and the steel substrate. We obtained the interface binding energy between the zinc coating and the steel substrate through the nano-scratch test. The accuracy of the model is verified by the finite element analysis of hemispherical parts. We used the five-layers element model with 0 thickness cohesive layer to simulate the zinc coating damage of galvanized steel sheet. The hemispherical part drawing experiment is used to verify the feasibility of the finite element analysis results. The results demonstrate that it is more accurate to consider the finite element numerical simulation of the zinc coating, introducing the cohesive element to simulate damage between the coating and the substrate. Drawing depth, stamping force, and the strain of the numerical simulation are closer to the experimental results.


2011 ◽  
Vol 422 ◽  
pp. 842-845
Author(s):  
Xue Ping Wang ◽  
Ying Zhang ◽  
Pan Li ◽  
Zhen Wei Zhang

This paper primarily simulates the heat exchange part’s stress and strain situation under the load of temperature and gravity and their coupling impact aiming at obtaining the stress and deformation distribution. The authors took advantage of the method of the finite element analysis to study the stress and strain situation. Through the analysis, each part of the transfer’s stress and strain can be calculated. The conclusion of this paper provides the basis for the further enhancement of the machine life and optimization of the structure design.


1983 ◽  
Vol 50 (4a) ◽  
pp. 765-769
Author(s):  
J. J. A. Rodal ◽  
D. J. Steigmann ◽  
E. A. Witmer

The formulation of the problem of finite elastic-viscoplastic deformation of thin beams is described. The finite element analysis of a representative problem is presented and various solution methods are surveyed.


2007 ◽  
Vol 344 ◽  
pp. 847-853 ◽  
Author(s):  
J. Hecht ◽  
K. Lamprecht ◽  
Marion Merklein ◽  
Konstantin Galanulis ◽  
J. Steinbeck

The dynamic development of highly accurate optical measuring machines within the last years pushed the introduction of digitizing techniques to many applications in the fields of quality control, reverse engineering and rapid prototyping. By projecting fringe patterns onto the object's surface and recording pictures of the curvature dependant deformation of the pattern, 3D coordinates for each camera pixel are calculated on the basis of the principle of triangulation. The generation of a polygon mesh can be used for the analysis of the deviation of a die or a formed part to the initial CAD data, i.e. by means of full field or section based comparison. This paper presents the application of the above mentioned techniques on a double sheet hydroforming process. The gathered 3D data of the clam-shell part as well as of the tooling dies served for the calculation of the deviation to the respective reference geometry. With respect to the utilization of digitized tooling data within the finite element analysis, further investigations were performed on the impact of data reduction strategies. Aiming on the minimization of the necessary number of elements, representing the tooling surface in a discrete state, and on the request for a sufficient degree of accuracy, these strategies have to be considered of high priority.


2011 ◽  
Vol 204-210 ◽  
pp. 1175-1179
Author(s):  
Jun Fei Wu ◽  
Wei Gao

In order to find out the advantages and shortcomings of two line types of three-thread single-screw pump, the comparative analysis method is initially used on the same kind screw pump of different line types .By using ANSYS,this paper adopted the finite element analysis to analyze the deformation、stress and strain of outer equidistant curve of curtate hypocycloid and inner equidistant curve of curtate epicycloids two line types three-thread single-screw pump under uniform pressure and 1MPa differential pressure .It focuses on discussing over the rubber stator of screw pump suffers influenced by the above three factors. The result shows that the existence of uniform pressure makes an uniform radial displacement of the rubber stator; the 1MPa differential pressure makes a great deformation of the rubber stator and the value of stress and strain also increases accordingly, by comparative analysis of two line types of three-thread single-pump, the sealing property of outer equidistant curve of curtate hypocycloid three-thread single-screw pump takes more advantages rather than inner equidistant curve of curtate epicycloids three-thread single-screw pump.


2014 ◽  
Vol 494-495 ◽  
pp. 373-376
Author(s):  
Zheng Yan Dong ◽  
Han Long Zhang

This study investigated the wind turbine blade root bolt static strength using the full scale static test, selected the root bolts of 1/4 bridge strain gauge using the finite element analysis method and the dynamic and static strain instrument. The data of the stress loading combined tension and bending bolt were obtained.


2013 ◽  
Vol 655-657 ◽  
pp. 372-375
Author(s):  
Xian Jun Zhou ◽  
Zhao Sheng Feng

The motion law of single metal progressive cavity pump was studied through motion simulation. Then, the finite element analysis software ANSYS was used to analyze the distribution characteristics and the influencing factors of the contact pressure. It was pointed out that the single metal progressive cavity pump has the ability to withstand high temperature and the differential pressure mainly influences the wear. At last the reasonable range of the clearance was given.


Sign in / Sign up

Export Citation Format

Share Document