Extraction and Characterization of Keratin from Chicken and Swiftlet Feather

2021 ◽  
Vol 1025 ◽  
pp. 157-162
Author(s):  
Sharifah Zafierah Syed Badrulzaman ◽  
Aimi Wahidah Aminan ◽  
Aizi Nor Mazila Ramli ◽  
Rohaida Che Man ◽  
Nur Izyan Wan Azelee

Keratin is a durable and fibrous protein of hair, nails, horns, hoofs, feathers and the epithelial cells in the outermost layers of the skin. Keratin in animals mainly presents in vertebrates such as mammals, birds and reptiles including chicken and swiftlet. This study aims to characterize keratin extracted from chicken and swiftlet feathers. The extraction of the keratin performed using dimethyl sufoxide (DMSO) at high temperature. The extracted keratin from both samples were used for the characterization process using Bradford protein assay, CHNS analysis and Fourier-transform infrared (FTIR) spectroscopy. This study showed that keratin extract of swiftlet feather showed higher protein concentration (0.813 mg/mL) than keratin extract of chicken feather (0.646 mg/ml). The highest composition for keratin extract is hydrogen which are 4.97% for keratin extract from swiftlet feathers and 3.12% for keratin extract from chicken feathers. FTIR analysis exhibited that carboxyl groups and amino groups are presence in both keratin samples however, the protein value is higher in swiftlet feathers compared to chicken feathers. This study's outcome is significant in discovering keratin extract from swiftlet feathers containing high protein content due to the breakdown of disulfide bonds. Furthermore, this research is the first report on keratin characterization from swiftlet feathers that would be useful for high value future keratin study.

1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


Consideration of the implications of the zwitterion hypothesis of Bjerrum (1923) makes it desirable to state afresh the principles underlying the methods commonly employed in the titration of amino-acids. Deductions of considerable theoretical importance, cf., e. g ., Calvery (1933) are still being made on the supposition that the alkalimetric formaldehyde titration method of Sørensen (1907) and the corresponding alcohol method of Foreman (1920) and of Willstätter and Waldschmidt-Leitz (1921) estimate the carboxyl groups of amino-acids whilst the acidimetric acetone titration of Linderstrøm-Lang (1928) estimates the amino-groups. Yet the zwitterion hypothesis indicates that this assumption is the reverse of the truth. Discussion is greatly facilitated by collective consideration of recent physico-chemical evidence clarifying the principles upon which these common bio-chemical methods rest. In a recent discussion of two of the titrimetric methods (Van Slyke and Kirk, 1933) the existence of this evidence is ignored, so that it becomes necessary to systematize and elaborate the empirical argument of these authors in the light of the relevant investigations of Grünhut (1919), Cray and Westrip (1925), Michaelis and Mizutani (1925), Birch and Harris (1930, b ), and Levy (1933). At the same time new and useful developments are indicated.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 518
Author(s):  
Somaye Akbari ◽  
Addie Bahi ◽  
Ali Farahani ◽  
Abbas S. Milani ◽  
Frank Ko

Blending lignin as the second most abundant polymer in Nature with nanostructured compounds such as dendritic polymers can not only add value to lignin, but also increase its application in various fields. In this study, softwood Kraft lignin/polyamidoamine dendritic polymer (PAMAM) blends were fabricated by the solution electrospinning to produce bead-free nanofiber mats for the first time. The mats were characterized through scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and thermogravimetry analyses. The chemical intermolecular interactions between the lignin functional groups and abundant amino groups in the PAMAM were verified by FTIR and viscosity measurements. These interactions proved to enhance the mechanical and thermal characteristics of the lignin/PAMAM mats, suggesting their potential applications e.g. in membranes, filtration, controlled release drug delivery, among others.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nazanin Mansouri Shirazi ◽  
Niloofar Eslahi ◽  
Adeleh Gholipour-Kanani

Keratin protein has been applied for biomedical applications due to its biocompatibility, biodegradability, mechanical resistance, and bioavailability. Tragacanth gum (TG) as a polysaccharide-based biopolymer has wound healing and antimicrobial properties. In this study, keratin was extracted from protein-based chicken feather by using reduction hydrolysis (sodium sulfide), and nanogels of keratin and TG composites at different ratios were produced by using the chemical cross-linking method. Then, cinnamon (5 and 10%) as an antibacterial herbal extract was added to the nanogels and coated on cotton fabric. The morphology and size of the composite nanogels, chemical structure, biological, and antibacterial properties were evaluated. According to DLS results, TGK2:1 (ratio of TG to keratin = 2:1) had the minimum size (80 nm) and PDI (0.1), and therefore, this sample was chosen as the optimum one. FESEM and TEM images showed the semi-spherical shape of the produced nanogels. FTIR spectra revealed the possible hydrogen bonding between the components, and the formation of disulfide bonds after the addition of hydrogen peroxide was confirmed by XPS. After loading cinnamon into the nanogels, an increase in size was observed from 80 nm for free-nanogel to 85 and 105 nm for 5 and 10% extract-loaded nanogels, respectively. Besides, more cinnamon was released from the treated fabrics by increasing time and cinnamon concentration. The antibacterial test exhibited good antibacterial properties against both Gram-positive and Gram-negative bacteria. Finally, MTT assay approved the biocompatibility of the produced nanogels for potential use in medical textiles.


2021 ◽  
Vol 15 (1) ◽  
pp. 27-36
Author(s):  
V. V. Mykhaliuk ◽  
◽  
V. V. Havryliak ◽  

Background. Keratins are natural biopolymers with a wide range of applications in the field of biotechnology. Materials and Methods. Extraction of keratins was performed by a modified Nakamura method using 250 mM DTT. The protein concentration in the supernatant was determined by Bradford method. The protein composition was studied by their electro­phoretic separation in a polyacrylamide gel in the presence of sodium dodecyl sulfate. The films were made by casting. The surface characteristics of the films were determined using a scanning electron microscope REMMA-102. The elemental composition of the films was determined using an X-ray microanalyzer. Results. The protein concentration in the supernatant was 3.75 mg/mL. After using dithiothreitol in the extraction mixture, we obtained proteins of intermediate filaments with a molecular weight of 40–60 kDa and a low Sulfur content. In the low molecular weight region, we obtained keratin-associated proteins with a molecular weight of 10–30 kDa and a high content of Sulfur. These proteins belong to fibrillar proteins, which can be used as a matrix for the creation of new keratin-containing biocomposites with a wide range of applications in reparative medicine and tissue engineering. Based on the obtained keratin extract, polymer films with and without the addition of glycerol were made. Scanning electron microscopy revealed that glycerol provided the film structure with homogeneity and plasticity due to the accumulation of moisture after the fixation by water vapor. The X-ray microanalysis of films revealed such elements as Sodium, Silicon, Sulfur, Potassium. Among the detected elements, Sulfur has the largest share that is due to the large number of disulfide bonds in the keratin molecule. Conclusions. The polymer keratin films with the addition of glycerol demonstrated better mechanical properties and can be used in biomedicine.


1998 ◽  
Vol 72 (12) ◽  
pp. 10189-10196 ◽  
Author(s):  
Katja Einer-Jensen ◽  
Thomas N. Krogh ◽  
Peter Roepstorff ◽  
Niels Lorenzen

ABSTRACT Viral hemorrhagic septicemia virus (VHSV) infections cause high losses in cultured rainbow trout in Europe. Attempts to produce a recombinant vaccine based on the transmembrane glycoprotein (G protein) have indicated that proper folding is important for the antigenicity and immunogenicity of the protein. The present study was initiated to identify the disulfide bonds and other structural aspects relevant to vaccine design. The N-terminal amino acid residue was identified as being a pyroglutamic acid, corresponding to Gln21 of the primary transcript. Peptides from endoproteinase-degraded G protein were analyzed by mass spectrometry before and after chemical reduction, and six disulfide bonds were identified: Cys29-Cys339, Cys44-Cys295, Cys90-Cys132, Cys172-Cys177, Cys195-Cys265, and Cys231-Cys236. Mass spectrometric analysis in combination with glycosidases allowed characterization of the glycan structure of the G protein. Three of four predicted N-linked oligosaccharides were found to be predominantly biantennary complex-type structures. Furthermore, an O-linked glycan near the N terminus was identified. Alignment of the VHSV G protein with five other rhabdovirus G proteins indicates that eight cysteine residues are situated at conserved positions. This finding suggests that there might be some common disulfide bonding pattern among the six rhabdoviruses.


Author(s):  
Monica Namizie Asey ◽  
Norhaizan Mohd Esa ◽  
Che Azurahanim Che Abdullah

Coating of iron oxide nanoparticles (MNP) is the common approach to reduce the effects of direct toxicity due to the ion oxidation that lead to the damage of DNA. This study investigates the effect of different concentration of Chitosan (Cs) used to coat the magnetic nanoparticle with variation in the crystallite size, chemical bonding, changes in weight and surface morphology. From the XRD results, it shows that the sample 1MNP-1Cs has optimum size of 13.42 ± 0.01 nm. From the FTIR analysis, it is revealed that there are three types of chemical bonding that occur in the MNP-Cs composites which are stretching vibrations of C-H, N–H vibration belonging to Cs and the Fe-O bonds from the MNP. From the FESEM analysis, it is found that the MNP-Cs composites have a wellshaped with spherical in form, as well as, smooth surfaces. As for TGA, the thermal decomposition of MNP nanocomposites was based on the amount of Cs and MNP used to produce the nanocomposites. Further studies will be conducted to find the optimum ratio of MNP-Cs for anticancer drug delivery application.


Sign in / Sign up

Export Citation Format

Share Document