Mechanical Properties and Microstructure Comparative Analysis of 500MPa Hot Rolled H-Section Different Positions for Ultra-Deep well Platform

2021 ◽  
Vol 1035 ◽  
pp. 464-472
Author(s):  
Cai Hong Lu ◽  
Fang Po Li ◽  
Li Hong Han ◽  
Hui Zhang ◽  
Shang Yu Yang ◽  
...  

With the increase of drilling depth, the mechanical properties of H-section steel used in drilling platform are more and more demanding. In this paper, the strength, low temperature impact toughness, plasticity, micro-hardness and microstructure of 500MPa hot rolled H-section steel produced by TMCP process were analyzed, and the strengthening mechanism was also studied. The results show that flanges of TMCP hot rolled H-section steel had the best strength and toughness, while the yield strength at web and R Angle was reduced to 91% and 78% of the flange, respectively. The impact toughness at -40°C of web and R Angle was reduced to 86% and 38% of the flange , and the micro-hardness reduced to 91% and 85% of the flange, respectively. The main strengthening mechanism of the TMCP hot rolled H-section steel is fine-grain strengthening, the carbonitride of V precipitation strengthening and surface bainite transformation strengthening.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1885-1890 ◽  
Author(s):  
ZUOCHENG WANG ◽  
GUOTAO CUI ◽  
TAO SUN ◽  
WEIMIN GUO ◽  
XIULING ZHAO ◽  
...  

In our research, boron was added into the Nb -added high strength low alloy (HSLA) H -section steels. The contents of boron added were 4ppm, 8ppm and 11ppm, respectively. The mechanical properties of H -section steels with/without boron were examined by using uniaxial tensile test and Charpy impact test ( V -notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results indicate that boron gives a significant increase in impact toughness, especially in low temperature impact toughness, though it leads to an unremarkable increase in strength and plasticity. For instance, the absorbed energy at -40°C reaches up to 126J from 15J by 8ppm boron addition, and the ductile-brittle transition temperature declines by 20°C. It is shown that boron has a beneficial effect on grain refinement. The fracture mechanism is transited from cleavage fracture to dimple fracture due to boron addition.


2010 ◽  
Vol 145 ◽  
pp. 293-297
Author(s):  
Shan Gao ◽  
Lan Ting Xia ◽  
Zhi Sheng Wu ◽  
Hong Zhan Li

The effect of Cd on the microstructure and mechanical properties of AZ31 magnesium alloy has been investigated in this paper. The results indicate that the microstructure of the AZ31 magnesium alloy is refined obviously by adding a little Cd. When 0.7%Cd is added, the alloy is made up of Al-rich α-Mg matrix and the phase of β-Mg17Al12 which distributes and disperses in the matrix uniformly. Cd solid dissolves in the matrix and there is no new phase formed, which contributes to the increase of the impact toughness, Brinell hardness, tension strength and elongation of the experimental alloy by 68.6%,10.3%,9% and 35%,respectively.


2012 ◽  
Vol 174-177 ◽  
pp. 1030-1033 ◽  
Author(s):  
Guo Tao Cui ◽  
Zuo Cheng Wang ◽  
Tao Sun ◽  
Wei Min Guo ◽  
Jun Qing Gao

In this research, trace boron (4ppm, 8ppm, 11ppm) was added into the Nb-added HSLA H-beams. The impact toughness of H-beams with/without boron was examined by Charpy impact test (V-notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results prove that the absorbed impact energy at -40°C for the 4ppm, 8ppm, 11ppm boron-added steels respectively reaches up to 80J, 126J, 85J from 15J and H-beams with boron have a lower FATT than that without boron. It is also found that the total oxygen content affects the absorbed impact energy to a certain extent. It is discovered by transmission electron microscope (TEM) that boron mainly exists in solid solution state, except that a little amount of Fe23(C, B)6is formed at the grain boundaries, and the distribution of Nb(C, N) is also influenced by boron addition.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 948 ◽  
Author(s):  
Minha Park ◽  
Moon Seok Kang ◽  
Geon-Woo Park ◽  
Eun Young Choi ◽  
Hyoung-Chan Kim ◽  
...  

High-Mn austenitic steels have been recently developed for a storage or transportation application of liquefied natural gas (LNG) in cryogenic fields. Since the structural materials are subjected to extremely low temperature, it requires excellent mechanical properties such as high toughness strength. In case of high-Mn steels, twinning deformation during the cold-working process is known to increase strength yet may cause embrittlement of heavy deformed twin and anisotropic properties. In this study, a recrystallization process through appropriate annealing heat treatments after cold-working was applied to improve the impact toughness for high-Mn austenitic steels. Microstructure and mechanical properties were performed to evaluate the influence of cold-worked and annealed high-Mn austenitic steels. Mechanical properties, such as strength and impact toughness, were investigated by tensile and Charpy impact tests. The relationship between strength and impact toughness was determined by microstructure analysis such as the degree of recrystallization and grain refinement. Consequently, both elongation and toughness were significantly increased after cold-working and subsequent annealing at 1000 °C as compared to the as-received (hot-rolled) specimen. The cold-worked high-Mn steel was completely recrystallized at 1000 °C and showed a homogeneous micro-structure with high-angle grain boundaries.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


2013 ◽  
Vol 762 ◽  
pp. 551-555 ◽  
Author(s):  
Marek Stanislaw Węglowski ◽  
Marian Zeman ◽  
Miroslaw Lomozik

In the present study, the investigation of weldability of new ultra-high strength - Weldox 1300 steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on the microstructure and mechanical properties of the heat affected zone (HAZ). In the frame of these investigation the microstructure was studied by the light (LM) and transmission electron microscopies (TEM). It has been shown that the microstructure of the Weldox 1300 steel is composed of tempered martensite, and inside the laths the minor precipitations mainly V(CN) and molybdenum carbide Mo2C were observed. Mechanical properties of parent material were analysed by the tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 - 300 s. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The results show that the impact toughness and hardness decrease with the increase of t8/5 under the condition of a single thermal cycle in simulated HAZ. The continuous cooling transformation diagrams (CCT-W for welding conditions) of Weldox 1300 steel for welding purposes was also elaborated. The steel Weldox 1300 for cooling time in the range of 2,5 - 4 s showed martensite microstructure, for time from 4 s to 60 s mixture of martensite and bainite, and for longer cooling time mixture of ferrite, bainite and martensite. The results indicated that the weldability of Weldox 1300 steel is limited and to avoid the cold cracking the preheating procedure or medium net linear heat input should be used.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 978 ◽  
Author(s):  
Pengfei Wang ◽  
Zhaodong Li ◽  
Guobiao Lin ◽  
Shitong Zhou ◽  
Caifu Yang ◽  
...  

Steels used for high-speed train wheels require a combination of high strength, toughness, and wear resistance. In 0.54% C-0.9% Si wheel steel, the addition of 0.075 or 0.12 wt % V can refine grains and increase the ferrite content and toughness, although the influence on the microstructure and toughness is complex and poorly understood. We investigated the effect of 0.03, 0.12, and 0.23 wt % V on the microstructure and mechanical properties of medium-carbon steels (0.54% C-0.9% Si) for train wheels. As the V content increased, the precipitation strengthening increased, whereas the grain refinement initially increased, and then it remained unchanged. The increase in strength and hardness was mainly due to V(C,N) precipitation strengthening. Increasing the V content to 0.12 wt % refined the austenite grain size and pearlite block size, and increased the density of high-angle ferrite boundaries and ferrite volume fraction. The grain refinement improved the impact toughness. However, the impact toughness then reduced as the V content was increased to 0.23 wt %, because grain refinement did not further increase, whereas precipitation strengthening and ferrite hardening occurred.


2018 ◽  
Vol 937 ◽  
pp. 61-67
Author(s):  
Yu Jie Li ◽  
Jin Wei Lei ◽  
Xuan Wei Lei ◽  
Oleksandr Hress ◽  
Kai Ming Wu

Utilizing submerged arc welding under heat input 50 kJ/cm on 60 mm thick marine engineering structure plate F550, the effect of preheating and post welding heat treatment on the microstructure and impact toughness of coarse-grained heat-affected zone (CGHAZ) has been investigated. The original microstructure of the steel plate is tempered martensite. The yield and tensile strength is 610 and 660 MPa, respectively. The impact absorbed energy at low temperature (-60 °C) at transverse direction reaches about 230~270 J. Welding results show that the preheating at 100 °C did not have obvious influence on the microstructure and toughness; whereas the tempering at 600 °C for 2.5 h after welding could significantly reduce the amount of M-A components in the coarse-grained heat-affected zone and thus improved the low temperature impact toughness.


2020 ◽  
Vol 62 (7) ◽  
pp. 678-688
Author(s):  
X. Jiang ◽  
J. Chen ◽  
H. Sun ◽  
Z. Shao

Abstract High-entropy alloy composites were fabricated by ball milling, cold isostatic pressing and microwave sintering to which were added varied contents of Al2O3 whiskers, La-Ce, and carbon nanotubes-graphene, respectively. The structure and mechanical properties of the composites were investigated by X-ray diffraction, scanning electron microscopy and a microhardness tester. The high-entropy alloy and composites show amorphous phases and some crystalline phases. Accordingly, the addition of the reinforcement phase can refine the grain size. The formation mechanism of the phase is mainly related to the factors of mixing entropy, enthalpy, differences in atomic size, and the structure and property of the elements. The hardness of the composites is higher than that of the alloy (437.5 HV), and those composites reinforced by 0.5 wt.-% nanotubes- 0.5 wt.-% graphene are the highest (593.99 HV). The fracture morphology of the Al2O3 whisker reinforced composite shows a river pattern, indicating brittle cleavage. According to the research results, it can be concluded that the strengthening mechanism of the high entropy alloy composites mainly reflects fine grain strengthening and load transfer, and the toughening mechanism mainly crack bridging and a pulling out of the reinforcing phase.


2021 ◽  
Vol 1016 ◽  
pp. 1739-1746
Author(s):  
Yan Mei Li ◽  
Shu Zhan Zhang ◽  
Zai Wei Jiang ◽  
Sheng Yu ◽  
Qi Bin Ye ◽  
...  

The effect of tempering time on the microstructure and mechanical properties of SA738 Gr.B nuclear power steel was studied using SEM, TEM and thermodynamic software, and its precipitation and microstructure evolution during tempering were clarified. The results showed that SA738 Gr.B nuclear power steel has better comprehensive mechanical properties after tempering at 650 °C for 1h. With the extension of the tempering time, M3C transformed into M23C6 with increasing size, which affected the yield strength and impact energy. When the tempering time is 8h ~ 10h, due to the transformation of M3C to M23C6, the composition of matrix around the carbide changed, causing the temperature of Ac1 dropped, forming twin-martensite which deteriorated the impact toughness of the steel.


Sign in / Sign up

Export Citation Format

Share Document