Effect of Trace Boron on Low Temperature Impact Toughness of Hot-Rolled Nb-Added HSLA H-Beams

2012 ◽  
Vol 174-177 ◽  
pp. 1030-1033 ◽  
Author(s):  
Guo Tao Cui ◽  
Zuo Cheng Wang ◽  
Tao Sun ◽  
Wei Min Guo ◽  
Jun Qing Gao

In this research, trace boron (4ppm, 8ppm, 11ppm) was added into the Nb-added HSLA H-beams. The impact toughness of H-beams with/without boron was examined by Charpy impact test (V-notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results prove that the absorbed impact energy at -40°C for the 4ppm, 8ppm, 11ppm boron-added steels respectively reaches up to 80J, 126J, 85J from 15J and H-beams with boron have a lower FATT than that without boron. It is also found that the total oxygen content affects the absorbed impact energy to a certain extent. It is discovered by transmission electron microscope (TEM) that boron mainly exists in solid solution state, except that a little amount of Fe23(C, B)6is formed at the grain boundaries, and the distribution of Nb(C, N) is also influenced by boron addition.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1885-1890 ◽  
Author(s):  
ZUOCHENG WANG ◽  
GUOTAO CUI ◽  
TAO SUN ◽  
WEIMIN GUO ◽  
XIULING ZHAO ◽  
...  

In our research, boron was added into the Nb -added high strength low alloy (HSLA) H -section steels. The contents of boron added were 4ppm, 8ppm and 11ppm, respectively. The mechanical properties of H -section steels with/without boron were examined by using uniaxial tensile test and Charpy impact test ( V -notch). The morphologies of the microstructure and the fracture surfaces of the impact specimens were observed by metalloscope, stereomicroscope and electron probe. The experimental results indicate that boron gives a significant increase in impact toughness, especially in low temperature impact toughness, though it leads to an unremarkable increase in strength and plasticity. For instance, the absorbed energy at -40°C reaches up to 126J from 15J by 8ppm boron addition, and the ductile-brittle transition temperature declines by 20°C. It is shown that boron has a beneficial effect on grain refinement. The fracture mechanism is transited from cleavage fracture to dimple fracture due to boron addition.


2016 ◽  
Vol 850 ◽  
pp. 943-949
Author(s):  
Liu Qing Yang ◽  
Yong Li Sui ◽  
Pei Pei Xia ◽  
Hai Hong Zhao ◽  
Zhang Hua Yin

Two kinds of industry trial X90 pipeline steels which have different chemical composition were chosen as test objects, and the grain coarsening, microstructural characteristics and the variation rules of low-temperature impact toughness in weld CGHAZ of this two steel under different welding heat input were studied by physical thermal simulation technology, SEM, optical microscope and Charpy impact tests. The results showed that the microstructure in weld CGHAZ of 1# steel was mainly bainite ferrite (BF) and most of the M/A constituents were blocky or short rod-like; the grains of 2# steel were coarse and there was much granular bainite (GB). Meanwhile M/A constituents became coarser and their morphology changed from block to long bar; alloy content of X90 pipeline steel under different weld heat input had great effect on the grain size of original austenite. When heat input was lower than 20KJ/cm, the impact toughness in CGHAZ of lower alloy content pipeline steel was good; as heat input increased, impact toughness in CGHAZ of 1# steel increased to the values between 260J and 300J when heat input was between 20KJ/cm and 25KJ/cm and the dispersion of impact energy was small. The impact toughness of 2# steel decreased gradually and the impact energy had the obvious dispersion.


2017 ◽  
Vol 36 (8) ◽  
pp. 825-830 ◽  
Author(s):  
Su-Fen Tao ◽  
Yun-Jin Xia ◽  
Fu-Ming Wang ◽  
Jie Li ◽  
Ding-Dong Fan

AbstractCircle quenching and tempering (CQ&T), intercritical quenching and tempering (IQ&T) and regular quenching and tempering (Q&T) were used to study the influence of heat treatment techniques on the low temperature impact toughness of steel EQ70 for offshore structure. The steels with 2.10 wt. % Ni (steel A) and 1.47 wt. % Ni (steel B) were chosen to analyze the effect of Ni content on the low temperature impact toughness of steel EQ70 for offshore structure. The fracture morphologies were examined by using a scanning electron microscope (SEM, JSM-6480LV), and microstructures etched by 4 vol. % nitric acid were observed on a type 9XB-PC optical microscope. The results show that the impact toughness of steel A is higher than that of steel B at the same test temperature and heat treatment technique. For steel B, the energy absorbed is, in descending order, CQ&T, Q&T and IQ&T, while for steel A, that is CQ&T, IQ&T and Q&T. The effects of heat treatment on the low temperature impact toughness are different for steels A and B, the absorbed energy changes more obviously for steel A. The results can be significant references for actual heat treatment techniques in steel plant.


Author(s):  
Liuqing Yang ◽  
Yongli Sui ◽  
PeiPei Xia ◽  
Die Yang ◽  
Yongqing Zhang

Two kinds of industry trial X90 pipeline steel which had different chemical composition were chosen as experimental materials, and the grain coarsening, microstructure evolution characteristics and the variation rules of low-temperature impact toughness in weld CGHAZ of this two steel under different welding heat input were studied by physical thermal simulation technology, SEM, optical microscope and Charpy impact test. The results show that microstructure in weld CGHAZ of 1# steel is mainly bainite ferrite (BF) and most of the M/A constituents are blocky or short rod-like; the grains of 2# steel are coarse and there is much granular bainite (GB), meanwhile M/A constituents become coarse and their morphology is changing from block to elongated laths; alloy content of X90 pipeline steel under different welding heat input has great effect on the grain size of original austenite, and when heat input is lower than 2.0KJ/mm, Charpy impact toughness in CGHAZ of lower alloy content pipeline steel is good; as heat input increases, impact toughness in CGHAZ of 1# steel is on the rise, and it is high (between 260J and 300J) when heat input is between 2.0KJ/mm and 2.5KJ/mm and the scatter of impact energy is small; impact toughness of 2# steel decreases gradually and the impact energy has obvious variability.


2017 ◽  
Vol 62 (2) ◽  
pp. 1341-1346 ◽  
Author(s):  
K.-A. Lee ◽  
Y.-K. Kim ◽  
J.-H. Yu ◽  
S.-H. Park ◽  
M.-C. Kim

AbstractThis study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs) on microstructure and impact toughness of the material. Initial microstructural observation identified prior-βgrain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment,αandβphase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.


2012 ◽  
Vol 602-604 ◽  
pp. 2096-2099
Author(s):  
Min You ◽  
Ling Wu ◽  
Hai Zhou Yu ◽  
Jing Rong Hu ◽  
Mei Li

The effect of the shock temperature and time on the impact toughness of the adhesively bonded steel butt joint under Charpy or Izod impact test is studied using the experimental method. The results obtained show that the impact toughness decreases when the shock temperature increased. When the curing time, temperature as well as the open assembly time was set as constant, the higher the shock temperature is, the lower the impact toughness of the joint. Comparing to the Charpy impact test, the Izod impact test is more sensitive to the shock temperature. When the shock temperature is set at a value not less than 300 C, the impact toughness measured is nearly the same as zero due to decomposition, carbonization and volatilization of the adhesive.


2011 ◽  
Vol 704-705 ◽  
pp. 1035-1040
Author(s):  
Da Yong You

The Charpy impact test、hardness test、microstructure and morphology analysis of impact fracture by SEM were introduced to research the difference of impact toughness on 25Mn, which were in the station of hot-rolled、normalized and quenched & tempered. The resulted showed that the changes of load、deformation and energy exhaust in difference stage of deformation and fracture could be gained by Charpy impact test. 25Mn in quenched & tempered has more deformation resistance and deformation property than which in other stations. The total impact values was 6J higher than which in normalized in average, however, the crack propagation values was 16.78J higher in average. Ductile-brittle property of the material can be estimated by the analysis of crack formation values、crack propagation values and fracture morphology on samples.


2014 ◽  
Vol 783-786 ◽  
pp. 1033-1038
Author(s):  
Shigeto Takebayashi ◽  
Kohsaku Ushioda ◽  
Naoki Yoshinaga ◽  
Shigenobu Ogata

The effect of tempering temperature on the impact toughness of 0.3 mass% carbon martensitic steels with prior austenite grain (PAG) size of about 6 μm and 30 μm were investigated. Instrumented Charpy impact test (ICIT) method was used to evaluate the impact toughness. The tempering temperature of 723K gives the largest difference in the Charpy impact energy at room temperature (RT) between the specimens with two different PAG sizes. Investigation of the test temperature dependence of Charpy impact energy in the 723K tempered steels shows a steep transition at around 200 K for the 6 μm PAG specimen, while it shows a continuous slow transition in a wide range of temperature for the 60 μm PAG specimen. ICIT waveform analysis shows that the fracture propagation energy in stead of the fracture initiation energy mainly controls the temperature dependence of the impact energy. The carbide size distribution in these two specimens was investigated by SEM and TEM. The 60 μm PAG specimen shows the distribution of coarser carbides than does the 6 μm PAG specimen, which seems to be the main reason for the observed difference between them in the Charpy impact energy and the other properties of impact fracture.


2014 ◽  
Vol 915-916 ◽  
pp. 597-601
Author(s):  
Ming Long Kang ◽  
Wu Hu ◽  
Jian Min Zeng

The impact performance of ZnAl27Cu2.5MgMn alloy from room Temperature to 2500 °C has been investigated by pendulum impact testing. The surface morphology of impact fracture is observed by scan electron microscope (SEM). The results indicate that impact energy of the alloy decreases as the temperature increases when the temperatures are lower than 100°C. Between 100°C and 200°C, impact energy increases as the temperature increases. And when the temperature exceeds 250°C, impact energy decreases dramatically. Impact energy gets to the maximum at room temperature. Impact behavior of the alloy can be evaluated by the width of impact spectrum curve. The wider the peak of impact spectrum curve, the higher the impact toughness. Whereas impact toughness is worse if peak is narrow.


2018 ◽  
Vol 2 (3) ◽  
pp. 45
Author(s):  
Fadli Robiandi ◽  
Menasita Menasita ◽  
Ikal M

Fabrication of rami fiber based on composite with epoxy matrixs and polymer blend of ABS-PP for alternative prosthetic soket application have been conducted. This research attemp to analyze impact resistance of rami-epoxy based on composite and polymer blend base ABS-PP. Those sample was made by hand lay up and simple hot casting methode at a temperature of 250 oC. rami-epoxy based on composite and polymer blend samples with volume fraction variation 0%, 25%, 50% and 75%. The result of charpy impact test showed an increase in impact energy along with an increase in the volume fraction of rami. In other hand, an increase in ABS volume fraction could reduce the impact energy of polymer blend samples. From impact testing result, both samples showed brittle like-structure. Broken Fiber with low fiber pull out mechanism was found out in rami-epoxy composite samples. Polymer blend samples showed pull out mechanism on ABS grain.


Sign in / Sign up

Export Citation Format

Share Document