Microstructural Modification of Cast Aluminum Alloys via Friction Stir Processing

2003 ◽  
Vol 426-432 ◽  
pp. 2891-2896 ◽  
Author(s):  
Z.Y. Ma ◽  
Siddharth R. Sharma ◽  
Rajiv S. Mishra ◽  
Murray W. Mahoney
2021 ◽  
Vol 890 ◽  
pp. 56-65
Author(s):  
Cristian Ciucă ◽  
Lia Nicoleta Boțilă ◽  
Radu Cojocaru ◽  
Ion Aurel Perianu

The results obtained by ISIM Timisoara to the development of the friction stir welding process (FSW) have supported the extension of the researches on some derived processes, including friction stir processing (FSP). The experimental programs (the researches) were developed within complex research projects, aspects regarding the principle of the process, modalities and techniques of application, experiments for specific applications, being approached. The paper presents good results obtained by friction stir processing of cast aluminum alloys and copper alloys. The optimal process conditions, optimal characteristics of the processing tools were defined. The complex characterization of the processed areas was done, the advantages of the process applying being presented, especially for the cast aluminum alloys: EN AW 4047, EN AW 5083 and EN AW 7021. The characteristics of the processed areas are compared with those of the base materials. The results obtained are a solid basis for substantiating of some specific industrial applications, especially in the automotive, aeronautical / aerospace fields.


Author(s):  
Murat Tiryakioğlu ◽  
Nelson Netto

Microstructural and mechanical data from the literature of friction stir processed (FSPed) cast aluminum alloys were reanalyzed. Results indicated that friction stir processing (FSP) produced more homogeneous microstructures, with finer eutectic Si particles, grains, and intermetallics. However, a relationship between microstructural measures and process parameters could not be established. Regardless of the resultant microstructure, structural casting defects, i.e., pores and oxide films, were reduced in size or completely eliminated after FSP. Consequently, ductility and fatigue life were drastically improved by FSP. Quality index analysis showed that some FSPed specimens have a higher structural quality than aerospace and premium quality castings, and can be used to determine the intrinsic properties of cast aluminum alloys.


2014 ◽  
Vol 39 (8) ◽  
pp. 6363-6373 ◽  
Author(s):  
A. Karam ◽  
T. S. Mahmoud ◽  
H. M. Zakaria ◽  
T. A. Khalifa

2012 ◽  
Vol 488-489 ◽  
pp. 345-349
Author(s):  
G. Elatharasan ◽  
V.S. Senthil Kumar

Friction stir welding is a technique useful for joining aluminum alloys that are difficult to weld. In recent years, however the focuses has been on welding dissimilar aluminum alloys, and analyze their mechanical properties and micro-structural characteristics. In the present study, the less investigated welding of cast aluminum alloys is considered. Cast aluminum alloys, A356 and A413, commonly used in automotive and aerospace industries, were friction-stir welded and their mechanical properties and micro-structural characteristics were analyzed. On testing their welded region, no welding defects were observed. The welded region exhibited a maximum tensile strength of 90 N/mm2 and Vickers micro-hardness of 56.8. The micro-structural observations at the nugget region revealed a refined grain structure.


2016 ◽  
Vol 710 ◽  
pp. 137-142 ◽  
Author(s):  
Jean Pierre Bergmann ◽  
Michael Grätzel ◽  
René Schürer ◽  
Anna Regensburg ◽  
Markus Weigl

Within the last decade, Friction Stir Welding (FSW) has increasingly been gaining relevance for joining nonferrous metals, especially aluminum alloys. Possible applications range from the aerospace and automotive sector up to manufacturing electrical components. Compared to conventional fusion welding processes, FSW offers numerous advantages, as it for example does not require shielding gas or filler material. However, FSW is still not applied or taken into account during the product development process in proportion to its potential. This is mainly caused by the lack of data in order to evaluate the process economically and differentiate it to other processes like arc and laser welding, also regarding technological factors. Therefore, this investigation focusses on the possibilities and limits when joining wrought and cast aluminum alloys, like EN AW-6082 T6, EN AW-7075 T651 and AlSi11Mg0,3, respectively, by FSW compared to MIG. The weld quality of the samples is characterized by tensile testing, hardness measurements and microstructure analysis. Furthermore, an approach to reduce the process forces by using FSW tools with reduced diameters and respectively adjusted process parameters is presented.


2013 ◽  
Vol 765 ◽  
pp. 741-745 ◽  
Author(s):  
Ye Cao ◽  
Diana A. Lados

Friction Stir Processing (FSP) of various aluminium alloys including wrought 6061 and cast A356, 319, and A390 have been systematically investigated in this study. The effects of processing on microstructure, hardness, tensile properties, and fatigue crack growth behaviour of the alloys were studied. The alloys were judiciously selected to understand the effects of Si level, type, and morphology, and to evaluate the contributions of different secondary phases and strengthening precipitates. Individual and combined effects of these microstructural features were also assessed. The results will be presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document