Simulation of X-Ray Powder Diffraction Patterns for One-Dimensionally Disordered Crystals

2004 ◽  
Vol 443-444 ◽  
pp. 87-90 ◽  
Author(s):  
S.V. Cherepanova ◽  
S.V. Tsybulya

Software for the simulation of X-ray powder diffraction (XRPD) patterns for ultrafine-grained materials with some kinds of imperfections has been developed. These calculations are performed on the base of the model of one-dimensionally disordered (1D-disordered) crystal [1]. Such a model can describe stacking faults (SF) and other planar defects (PD) and also finite size of coherently scattering domains. Simulated XRPD pattern is compared with experimental one and can be fitted to it. Potentialities of the software are illustrated by several examples.

Clay Minerals ◽  
1982 ◽  
Vol 17 (4) ◽  
pp. 393-399
Author(s):  
C. E. Corbato ◽  
R. T. Tettenhorst

AbstractQuantitative estimates were made by visually matching computer-simulated with experimental X-ray powder diffractometer patterns for two samples. One was a natural mixture of dickite and nacrite in about equal proportions. The second sample contained mostly quartz with corundum and mullite in small (0.5–1%) amounts. Percentages deduced from pattern matching agreed to within ±10% of the weight fractions of the components determined by an alternative method of analysis.


2012 ◽  
Vol 27 (4) ◽  
pp. 256-262 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
H. Wu ◽  
M. Suchomel

M2(dhtp)·nH2O (M = Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate), known as MOF74, is a family of excellent sorbent materials for CO2 that contains coordinatively unsaturated metal sites and a honeycomb-like structure featuring a broad one-dimensional channel. This paper describes the structural feature and provides reference X-ray powder diffraction patterns of these four isostructural compounds. The structures were determined using synchrotron diffraction data obtained at beam line 11-BM at the Advanced Photon Source (APS) in the Argonne National Laboratory. The samples were confirmed to be hexagonal R 3 (No. 148). From M = Mn, Co, Ni, to Zn, the lattice parameter a of MOF74 ranges from 26.131 73(4) Å to 26.5738(2) Å, c from 6.651 97(5) to 6.808 83(8) Å, and V ranges from 3948.08 Å3 to 4163.99 Å3, respectively. The four reference X-ray powder diffraction patterns have been submitted for inclusion in the Powder Diffraction File (PDF).


1990 ◽  
Vol 34 ◽  
pp. 369-376
Author(s):  
G. J. McCarthy ◽  
J. M. Holzer ◽  
W. M. Syvinski ◽  
K. J. Martin ◽  
R. G. Garvey

AbstractProcedures and tools for evaluation of reference x-ray powder patterns in the JCPDSICDD Powder Diffraction File are illustrated by a review of air-stable binary oxides. The reference patterns are evaluated using an available microcomputer version of the NBS*A1DS83 editorial program and PDF patterns retrieved directly from the CD-ROM in the program's input format. The patterns are compared to calculated and experimental diffractograms. The majority of the oxide patterns have been found to be in good agreement with the calculated and observed diffractograms, but are often missing some weak reflections routinely observed with a modern diffractometer. These weak reflections are added to the PDF pattern. For the remainder of the phases, patterns are redetermined.


2014 ◽  
Vol 950 ◽  
pp. 48-52
Author(s):  
De Gui Li ◽  
Ming Qin ◽  
Liu Qing Liang ◽  
Zhao Lu ◽  
Shu Hui Liu ◽  
...  

The Al2M3Y(M=Cu, Ni) compound was synthesized by arc melting under argon atmosphere. The high-quality powder X-ray diffraction data of Al2M3Y have been presented. The refinement of the X-ray diffraction patterns for the Al2M3Y compound show that the Al2M3Y has hexagonal structure, space groupP6/mmm(No.191), with a = b = 5.1618(2) Å, c = 4.1434(1) Å,V= 95.6 Å3,Z= 1,ڑx= 5.7922 g/cm3,F30= 155.5(0.0057, 34), RIR = 2.31 for Al2Cu3Y, and with a = b = 5.0399(1) Å, c = 4.0726(1) Å,V= 89.59 Å3,Z= 1,ڑx= 5.9118 g/cm3,F30= 135.7(0.0072, 30), RIR = 2.54 for Al2Ni3Y.


1996 ◽  
Vol 11 (1) ◽  
pp. 51-55 ◽  
Author(s):  
W. A. Dollase

The title materials are stuffed cristobalites possessing moderate to extreme pseudosymmetry. On the bases of their X-ray powder diffraction patterns, the Mg, Zn, and Cd compounds had been previously reported as cubic and, more recently, the Zn phase as orthorhombic. Newly measured X-ray powder diffraction data demonstrate that all (including the hitherto unknown Co analog) have the Pca21 structure of Na2BeSiO4 at room temperature, but with a widely variable degree of cubic pseudosymmetry. Observed X-ray diffraction data are in good agreement with those calculated by the Rietveld method using a constrained model with Pca21 M2+/Si site occupancy and pseudocentrosymmetric Pcab atom locations. For the most nearly cubic phase, the Cd compound, there is too little deviation in the pattern from cubic symmetry to support atom coordinate refinement even with the constrained model. In these derivatives of the stuffed cristobalite structure family, M2+ and Si atoms form an ordered tetrahedral array which avoids M2+–O–M2+ connections. Potassium atoms fill all of the intervening large cavity sites.


2016 ◽  
Vol 31 (3) ◽  
pp. 223-228 ◽  
Author(s):  
W. Wong-Ng ◽  
Y. Yan ◽  
J.A. Kaduk ◽  
X.F. Tang

The structures and powder X-ray reference diffraction patterns of the “natural superlattice” series Bi1−xPbxOCuSe (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) have been investigated. As the ionic radius of Pb2+ is greater than that of Bi3+, the unit-cell volume of Bi1−xPbxOCuSe increases progressively from x = 0 to 0.1, namely, from 137.868(5) to 139.172(11) Å3, as expected. The structure of Bi1−xPbxOCuSe is built from [Bi2(1−x)Pb2xO2]2(1−x)+ layers normal to the c-axis alternating with [Cu2Se2]2(1−x)− fluorite-like layers. Pb substitution in the Bi site of Bi1−xPbxOCuSe leads to the weakening of the “bonding” between the [Bi2(1−x)Pb2xO2]2(1−x)+ and the [Cu2Se2]2(1−x)− layers. Powder patterns of Bi1−xPbxOCuSe were submitted to be included in the Powder Diffraction File.


Sign in / Sign up

Export Citation Format

Share Document