High Performance Materials Development in the 21st Century: Trends and Directions

2004 ◽  
Vol 449-452 ◽  
pp. 7-12
Author(s):  
James C. Williams

Product performance including the cost of ownership is becoming increasingly dependent on the availability of high quality, high performance, affordable materials of construction. Today, the requirements placed on a new material for a high performance structural application extend well beyond the improvement of one or more material properties. This makes the introduction of a new material a multi-faceted activity. Modern structural materials derive their performance from a combination of composition and processing, the results of which are inextricably intertwined. This statement pertains to both metallic alloys and to fiber reinforced composite materials. In addition, material cost and the reproducibility of material properties are becoming more central as acceptance criteria for incorporating new materials into new products. This paper will use examples of recent developments in materials for aircraft gas turbines to depict the materials introduction process. Some of these developments have been successful and others have not. These examples illustrate the changing picture that represents the successful introduction of a new structural material, even in a high performance, high value product such as a gas turbine. Specific examples will include metal matrix composites, Ni-base alloys and improved reliability Ti alloys. The basis for successful introduction, or lack thereof will be discussed. While the examples are specific to gas turbines, they are generally instructive and depict the growing complexity of the process of developing and introducing new materials into a high value product. An additional issue for all new materials introduction is the time required to achieve product readiness. As the time required for product design decreases, there has been little commensurate reduction in materials development cycle time. This matter also will be discussed and some possible reasons and potential solutions will be described.

Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 52-53
Author(s):  
Lucy Sharp

Materials technology is a constantly evolving discipline, with new materials leading to novel applications. For example, new material properties arise from combining different materials into composites. Researching materials can help solve societal challenges, with the creation of innovative materials resulting in breakthroughs in overcoming hurdles facing humankind, including energy challenges and medical problems. Innovative materials breathe new life into industries and spur on scientific and technological discovery.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


1997 ◽  
Vol 6 (2) ◽  
pp. 215-227 ◽  
Author(s):  
Guy Edjlali ◽  
Gagan Guyagrawal ◽  
Alan Sussman ◽  
Jim Humphries ◽  
Joel Saltz

For better utilization of computing resources, it is important to consider parallel programming environments in which the number of available processors varies at run-time. In this article, we discuss run-time support for data-parallel programming in such an adaptive environment. Executing programs in an adaptive environment requires redistributing data when the number of processors changes, and also requires determining new loop bounds and communication patterns for the new set of processors. We have developed a run-time library to provide this support. We discuss how the run-time library can be used by compilers of high-performance Fortran (HPF)-like languages to generate code for an adaptive environment. We present performance results for a Navier-Stokes solver and a multigrid template run on a network of workstations and an IBM SP-2. Our experiments show that if the number of processors is not varied frequently, the cost of data redistribution is not significant compared to the time required for the actual computation. Overall, our work establishes the feasibility of compiling HPF for a network of nondedicated workstations, which are likely to be an important resource for parallel programming in the future.


2017 ◽  
Author(s):  
Yuriy Mishchenko ◽  
Murat Kaya ◽  
Erkan Ozbay ◽  
Hilmi Yanar

AbstractRecent developments in BCI techniques have demonstrated high-performance control of robotic prosthetic systems primarily via invasive methods. In this work we develop an electroencephalography (EEG) based noninvasive BCI system that can be used for a similar, albeit lower-speed robotic control, and a signal processing system for detecting user’s mental intent from EEG data based on up to 6-state motor-imagery BCI communication paradigm. We examine the performance of that system on experimental data collected from 12 healthy participants and analyzed offline. We show that our EEG BCI system can correctly identify different motor imageries in EEG data with high accuracy: 3 out of 12 participants achieved accuracy of 6-state communication in 80-90% range, while 2 participants could not achieve a satisfactory accuracy. We further implement an online BCI system for control of a virtual 3 degree-of-freedom prosthetic manipulator and test it with our 3 best participants. The participants’ ability to control the BCI is quantified by using the percentage of successfully completed BCI tasks, the time required to complete a task, and the error rate. 2 participants were able to successfully complete 100% of the test tasks, demonstrating on average the error rate of 80% and requiring 5-10 seconds to execute a manipulator move. 1 participant failed to demonstrate a satisfactory performance in online trials. Our results lay a foundation for further development of EEG BCI-based robotic assistive systems and demonstrate that EEG-based BCI may be feasible for robotic control by paralyzed and immobilized individuals.


Author(s):  
Martin P. Bendsøe ◽  
Alejandro R. Díaz ◽  
Robert Lipton ◽  
John E. Taylor

Abstract This paper describes some recent developments that treats the simultaneous optimization of material and structure for minimum compliance. The basic idea is to represent the material properties for a linear elastic continuum in the most general form possible namely as the unrestricted set of elements of positive semi-definite constitutive tensors. The cost of resource is measured through certain invariants of the tensors, here the 2-norm or the trace of the tensors. The advantage of this general formulation is that analytical forms for the optimized material properties can be derived and that effective methods for computational solution can be devised for the resulting reduced structural optimization problem.


2012 ◽  
Vol 509 ◽  
pp. 10-11 ◽  
Author(s):  
M.L. Ted Guo ◽  
C.Y.A. Tsao

New materials for high performance tribological applications have been one of the major incentives for the development of aluminum-based metal matrix composites (MMCs). MMCs have received attention because of their improved specific strength, good wear resistance, higher thermal conductivity than ceramics, lower coefficient of thermal expansion, etc. Traditionally, lubricant externally added plays an important role in reducing wear in the application of wear resistance materials. However, self-lubricating materials are more desired than materials to which lubricant needs to be applied periodically, especially for wear parts difficult to be accessed, since solid lubricant contained in the former can be released automatically during the wear process and reduces wear.


Author(s):  
E. Salami ◽  
J. A. Soler ◽  
R. Cuadrado ◽  
C. Barrado ◽  
E. Pastor

Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) have a great potential to support a wide variety of aerial remote sensing applications. Most UAS work by acquiring data using on-board sensors for later post-processing. Some require the data gathered to be downlinked to the ground in real-time. However, depending on the volume of data and the cost of the communications, this later option is not sustainable in the long term. This paper develops the concept of virtualizing super-computation on-board UAS, as a method to ease the operation by facilitating the downlink of high-level information products instead of raw data. Exploiting recent developments in miniaturized multi-core devices is the way to speed-up on-board computation. This hardware shall satisfy size, power and weight constraints. Several technologies are appearing with promising results for high performance computing on unmanned platforms, such as the 36 cores of the TILE-Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV by Adapteva. The strategy for virtualizing super-computation on-board includes the benchmarking for hardware selection, the software architecture and the communications aware design. A parallelization strategy is given for the 36-core TILE-Gx36 for a UAS in a fire mission or in similar target-detection applications. The results are obtained for payload image processing algorithms and determine in real-time the data snapshot to gather and transfer to ground according to the needs of the mission, the processing time, and consumed watts.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1939
Author(s):  
Jun Wei Chen ◽  
Xanno K. Sigalingging ◽  
Jenq-Shiou Leu ◽  
Jun-Ichi Takada

In recent years, Chinese has become one of the most popular languages globally. The demand for automatic Chinese sentence correction has gradually increased. This research can be adopted to Chinese language learning to reduce the cost of learning and feedback time, and help writers check for wrong words. The traditional way to do Chinese sentence correction is to check if the word exists in the predefined dictionary. However, this kind of method cannot deal with semantic error. As deep learning becomes popular, an artificial neural network can be applied to understand the sentence’s context to correct the semantic error. However, there are still many issues that need to be discussed. For example, the accuracy and the computation time required to correct a sentence are still lacking, so maybe it is still not the time to adopt the deep learning based Chinese sentence correction system to large-scale commercial applications. Our goal is to obtain a model with better accuracy and computation time. Combining recurrent neural network and Bidirectional Encoder Representations from Transformers (BERT), a recently popular model, known for its high performance and slow inference speed, we introduce a hybrid model which can be applied to Chinese sentence correction, improving the accuracy and also the inference speed. Among the results, BERT-GRU has obtained the highest BLEU Score in all experiments. The inference speed of the transformer-based original model can be improved by 1131% in beam search decoding in the 128-word experiment, and greedy decoding can also be improved by 452%. The longer the sequence, the larger the improvement.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Tripti ◽  
R.S. Haldar ◽  
S. Geetha ◽  
U.K. Niyogi ◽  
R.K. Khandal

AbstractIt is true that the developments in material sciences along with the improvements in various aspects of technology involved in transforming materials into products, over the years, have been responsible for making many of the impossible-looking devices possible. It is also a fact that the demand for a new, improved and better material has never ended; in fact it has been increasing to a greater degree and with bigger dimensions than ever before, especially in recent times. As a matter of fact, for certain advanced applications, the need for efforts to have new materials can never be over emphasized; for example, in the area of biomedical devices such as intraocular lens (IOL). The advances in the field of bio-medical applications require the materials of high quality meeting stringent norms of performance. For implants such as the ones like IOL used for correction of vision of the eyes, besides the quality and performance of materials, biocompatibility is an issue of major concern. The material scientists have been working on the development of materials for IOLs targeting the needs arising out of the developing countries. The challenges include not only to bring down the cost of the materials used for IOLs but also to increase the biocompatibility of IOLs. For making the development process easy and bringing the state-of-the- art of knowledge to those looking for new materials, it is thought necessary to review various facets of IOLs in the present paper. Not only the aspects related to the recent developments in biomedical devices of eye care but also related to the properties of available materials vis a vis the deficiencies in properties of existing materials have been covered in this review. The aim has been to bring out the gap areas at various levels of process of product chain starting from the monomer to polymer, blank to IOL, insertion of IOL into eyes to life cycle of IOLs, mainly to provide certain possible and feasible leads to meet the challenges of making new and more biocompatible materials.


2006 ◽  
Vol 321-323 ◽  
pp. 688-693
Author(s):  
Syuutei Sasaki ◽  
Tsutomu Ezumie

The stress analysis of the double column made of the dissimilar material is not enough reported the problems about the interface of the crack on the surface. These products are guaranteed for the high performance, and are composed of the dissimilar material or composted to the new material or composed to the new materials again by the compound of the material and the advancement of joint technology. The Stress Intensity Factor K, Kand K usually act in single or mixed modes. The separation of K, Khas already been achieved. In this paper, an experimental technique for determining the stress intensity factor Khas been presented by using the method of reflected caustics in combination with the stress freezing method. The experimental model is a cylindrical bar with w radial crack along the direction of the axis under the load of pure torsion. In order to obtain a caustic pattern, a slice cut from the frozen model is annealed, and evaluated it for the stress intensity factor in a double column of the different kind material by the experiment analysis.


Sign in / Sign up

Export Citation Format

Share Document