Development of 3-D Parameterized Design System for Involute Gear Parts

2004 ◽  
Vol 471-472 ◽  
pp. 230-233
Author(s):  
Hang Gao ◽  
K. Zhao ◽  
Y. Lu

Taking the three-dimensional CAD software Solidworks as developing platform and with the help of its powerful OLE technical support offered, the mathematical model of involute curved surface of bevel gear is established and the 3-D parameterized design and analyzing system for involute gear parts is developed in the paper. By inputting necessary variables on the interface of the gear design system an accurate 3-D parameterized geometric entity of involute gear can be automatically created. In the design system a kind of method called template technique is developed to realize the conversion of a gear part from 3-D geometric entity to corresponding 2-D standard engineering drawing and the marking of necessary design technical requests and parameters on the engineering drawing automatically, which offsets the lack that current three-dimensional CAD software can not automatically create standard two-dimensional CAD engineering drawing. Also the gear strength checkout program module is developed which is helpful to greatly improve design efficiency of involute gear parts.

2014 ◽  
Vol 539 ◽  
pp. 42-46
Author(s):  
Hong Tao Guo ◽  
Wei Guo Zhang

Article use Visual LISP development tools and DCL dialog technology, which implements the standard straight teeth, a two-dimensional cylindrical gear parametric drawing on AutoCAD platform, with easy to operate and improve design efficiency. We achieved that using the dialog box design input parameters, and gear parts of the design calculations, parameters proofreading and all kinds of gear design drawing different structures by programming. The output is fully automated computer-aided design system. The results show that the design of the system significantly improves the efficiency of the part design.


1994 ◽  
Vol 10 (04) ◽  
pp. 217-222
Author(s):  
Kohji Honda ◽  
Noriyuki Tabushi

A VLCC (very large crude oil carrier) has approximately 1000 curved longitudinal beams, many of which have three-dimensional complicated curvatures. Due to the shortage of highly skilled workers and the need to keep costs down, production and structural designers have worked to reduce the number of such beams. In order to meet the requirements of production, the authors' company has attempted several design approaches for the longitudinal beam layout to reduce the number of beams that have complicated curvature. Recently, through the application of a computer-aided design system, which has been improved for shipbuilding based on the Calma's system, a new design method for the longitudinal beam layout has been successfully developed. A significant number of beams with a twisted configuration have been eliminated and replaced with beams of simpler, two-dimensional shapes. This paper shows the transition of these design approaches, and the application of the new design to building a VLCC.


Author(s):  
Cheng Xu ◽  
R. S. Amano ◽  
A. Alkhalidi

Turbomachinery industries are interested in using optimization procedures that enable to enhance compressor efficiency and wide operating ranges. Most of the design processes are focus on either in aerodynamics or structure. However, the compressor design is an integration between the aerodynamics and structure. This paper presents the recent developments of the aerodynamic integral design system. A design process including the meanline design, throughflow optimization and three-dimensional viscous analysis was used in the centrifugal compressor design. The aerodynamic design design needs to optimize at same time. Normally the most of performance of the favorite features are not friendly to the structure reliability of the compressor wheel. The optimization between aerodynamic performance and structure reliability is critical to provide the maximal potential of the compressor design. The main purpose of current paper is to discuss the importance of the aerodynamic optimization through lean effects. It can be seen from the discussion that the integration of aerodynamics is very important.


2006 ◽  
Vol 532-533 ◽  
pp. 737-740
Author(s):  
Hang Gao ◽  
Jia Peng Yu ◽  
Xue Shu Liu

Aiming at the characteristics of turbine compressor’s impellers, such as complexity in surface, assembled structure and variety in parameter, the step-by-step design thought is put forward, which realizes the high efficiency and visualization of parameterized design through distributing design parameters evenly to several phases or interfaces. According to the demand of the enterprise, SolidWorks CAD Software was chosen as the three-dimensional CAD platform, SQL Server 7.0 was chosen as the database management system, and Visual C++ was chosen for the programming language of secondary developing. Then the parameterized design system for series turbine compressor impellers is developed, which realizes automatic creation of 3D models and 2D engineering drawings using template technique.


2008 ◽  
Vol 70 (6) ◽  
pp. 639-644 ◽  
Author(s):  
Shinichi IMAFUKU ◽  
Juichiro NAKAYAMA ◽  
Taro MAKINO ◽  
Masaaki KOSAKA ◽  
Akiko KOZASA ◽  
...  

Author(s):  
Ted Janssen ◽  
Gervais Chapuis ◽  
Marc de Boissieu

The law of rational indices to describe crystal faces was one of the most fundamental law of crystallography and is strongly linked to the three-dimensional periodicity of solids. This chapter describes how this fundamental law has to be revised and generalized in order to include the structures of aperiodic crystals. The generalization consists in using for each face a number of integers, with the number corresponding to the rank of the structure, that is, the number of integer indices necessary to characterize each of the diffracted intensities generated by the aperiodic system. A series of examples including incommensurate multiferroics, icosahedral crystals, and decagonal quaiscrystals illustrates this topic. Aperiodicity is also encountered in surfaces where the same generalization can be applied. The chapter discusses aperiodic crystal morphology, including icosahedral quasicrystal morphology, decagonal quasicrystal morphology, and aperiodic crystal surfaces; magnetic quasiperiodic systems; aperiodic photonic crystals; mesoscopic quasicrystals, and the mineral calaverite.


Proceedings ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 29
Author(s):  
Alessandro Pracucci ◽  
Sara Magnani ◽  
Laura Vandi ◽  
Oscar Casadei ◽  
Amaia Uriarte ◽  
...  

The nearly Zero Energy building (nZEB) renovation market is currently the key feature in the construction sector. RenoZEB aims to develop a systematic approach for retrofitting by assembling different technologies in a plug and play building envelope. This paper presents the methodology used to transform the RenoZEB concept in the design system. A multi-criteria decision matrix is used for the selection of the best façade technologies within the market while the analysis of the existing building conditions allows to develop a replicable approach for designing deep retrofitting intervention through a plug&play façade. The methodology appears to be a valuable support for the selection of technologies and allows to define a design guideline for the envelope.


2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


Author(s):  
Venkatesh Puneeth ◽  
Sarpabhushana Manjunatha ◽  
Bijjanal Jayanna Gireesha ◽  
Rama Subba Reddy Gorla

The induced magnetic field for three-dimensional bio-convective flow of Casson nanofluid containing gyrotactic microorganisms along a vertical stretching sheet is investigated. The movement of these microorganisms cause bioconvection and they act as bio-active mixers that help in stabilising the nanoparticles in the suspension. The two forces, Thermophoresis and Brownian motion are incorporated in the Mathematical model along with Stefan blowing. The resulting model is transformed to ordinary differential equations using similarity transformations and are solved using [Formula: see text] method. The Velocity, Induced Magnetic field, Temperature, Concentration of Nanoparticles, and Motile density profiles are interpreted graphically. It is observed that the Casson parameter decreases the flow velocity and enhances the temperature, concentration, and motile density profiles and also it is noticed that the blowing enhances the nanofluid profiles whereas, suction diminishes the nanofluid profiles. On the other hand, it is perceived that the rate of heat conduction is enhanced with Thermophoresis and Brownian motion.


2012 ◽  
Vol 424-425 ◽  
pp. 598-602 ◽  
Author(s):  
You Min Wang ◽  
Chun Zhao ◽  
Jian Hua Zhang

In order to improve design performance, shorten development cycles, reduce production cost, we design and research the forklift hydraulic system, developed forklift hydraulic system diagram. Forklift virtual prototype’s 3-D solid modeling is designed by Pro / E three-dimensional software, and imported into the ADAMS environment. Add constraints and drivers exert the control function separately to the tilting cylinder and lifting cylinder, carry on the kinematics simulation. Through the analysis to the compound motion actuation control functional arrangement、the compound motion speed graph、the gate’s tilt angle graph、the tilting cylinder stress graph and the lifting cylinder stress graph, he simulation result indicated: each cylinder design is reasonable, the movement without interference,the reasonable work scope satisfied to the work size request


Sign in / Sign up

Export Citation Format

Share Document