High Z - Large Strain Deformation Processing and Its Applications

2006 ◽  
Vol 503-504 ◽  
pp. 329-334 ◽  
Author(s):  
Shiro Torizuka ◽  
Akio Ohmori ◽  
S.V.S. Narayana Murty ◽  
Kotobu Nagai

Ultrafine-grained structures formed dynamically through simple compression at warm deformation temperatures were investigated in a 0.15%C- 0.4%Si-1.5%Mn steel. The effects of strain, strain rate and deformation temperature on the microstructural evolution were examined using an isothermal plane strain compression technique with a pair of anvils. The maximum strain was 4, the deformation temperature was below the AC1 temperature, and the Zener-Hollomon parameter (Z) ranged between 1012 s-1 and 1016 s-1. Ultrafine ferrite grains surrounded by high angle boundaries are generated by simple compression when the strain exceeded a critical value. The number of newly generated ultrafine grains increased with the strain; however, the average sizes were found to be independent of strain. The grain size, `d`, was found to depend on Z parameter. An equation, d (μm) =102.07Z-0.16, was found to satisfy the experimentally obtained data. This study demonstrates the possibility of obtaining ultrafine ferrite through multi-pass caliber rolling as a high Z- large strain deformation technique for producing bulk engineering components. It was also noted that the empirical relation established based on single pass compression tests is valid for multi-pass caliber rolling.

2011 ◽  
Vol 704-705 ◽  
pp. 135-140 ◽  
Author(s):  
Yi Zhang ◽  
Bao Hong Tian ◽  
Ping Liu

The hot deformation behavior of Cu-Ni-Si-P alloy have been investigated by means of isothermal compression tests on a Gleeble-1500D thermal mechanical simulator in the temperature ranges of 873-1073 K and strain rate ranges of 0.01-5s-1. The results show that the dynamic recryatallization occurs in Cu-Ni-Si-P alloy during hot deformation. The peak stress during hot deformation can be described by the hyperbolic sine function. The influence of deformation temperature and strain rate on the peak stress can be represented using the Zener-Hollomon parameter. Moreover, the activation energy for hot deformation of Cu-Ni-Si-P alloy is determined to be 485.6 kJ / mol within the investigated ranges of deformation temperature and strain rate. The constitutive equation of the Cu-Ni-Si-P alloy is also established. Keywords: Cu-Ni-Si-P alloy; Hot deformation; Dynamic recrystallization; Zener-Hollomon parameter.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Munir Al-Saadi ◽  
Wangzhong Mu ◽  
Christopher N. Hulme-Smith ◽  
Fredrik Sandberg ◽  
Pär G. Jönsson

Alloy 825 is widely used in several industries, but its useful service life is limited by both mechanical properties and corrosion resistance. The current work explores the effect of the addition of magnesium on the recrystallization and mechanical behavior of alloy 825 under hot compression. Compression tests were performed under conditions representative of typical forming processes: temperatures between 1100 and 1250 °C and at strain rates of 0.1–10 s−1 to a true strain of 0.7. Microstructural evolution was characterized by electron backscattered diffraction. Dynamic recrystallization was found to be more prevalent under all test conditions in samples containing magnesium, but not in all cases of conventional alloy 825. The texture direction ⟨101⟩ was the dominant orientation parallel to the longitudinal direction of casting (also the direction in which the samples were compressed) in samples that contained magnesium under all test conditions, but not in any sample that did not contain magnesium. For all deformation conditions, the peak stress was approximately 10% lower in material with the addition of magnesium. Furthermore, the differences in the peak strain between different temperatures are approximately 85% smaller if magnesium is present. The average activation energy for hot deformation was calculated to be 430 kJ mol−1 with the addition of magnesium and 450 kJ mol−1 without magnesium. The average size of dynamically recrystallized grains in both alloys showed a power law relation with the Zener–Hollomon parameter, DD~Z−n, and the exponent of value, n, is found to be 0.12. These results can be used to design optimized compositions and thermomechanical treatments of alloy 825 to maximize the useful service life under current service conditions. No experiments were conducted to investigate the effects of such changes on the service life and such experiments should now be performed.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2016 ◽  
Vol 35 (6) ◽  
pp. 599-605 ◽  
Author(s):  
Fuqiang Zhen ◽  
Jianlin Sun ◽  
Jian Li

AbstractThe flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s−1 by isothermal compression tests. The true stress–strain curves were obtained from the measured load–stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.


2013 ◽  
Vol 753-755 ◽  
pp. 241-244
Author(s):  
Peng Tian ◽  
Zhi Yong Zhong ◽  
Wei Jun Hui ◽  
Rui Guo Bai ◽  
Xing Li Zhang ◽  
...  

The hot compressive deformation behavior of SWRCH 35K was studied with uniaxial hot compression simulation tests at 923 ~ 1223 K and strain rate of 0.01 ~ 20 /s. The results show that the hot compressive deformation activation energy was 408 kJ/mol and the rang of deformation stored energy was 10 ~ 50 J/mol. The quadratic fitting expression between deformation stored energy and Zener-Hollomon parameter (Z) was established and the deformation stored energy was considered to increased with increasing Z or with lower deformation temperature and increasing deformation rate.


2010 ◽  
Vol 638-642 ◽  
pp. 1905-1910 ◽  
Author(s):  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Yuuji Kimura ◽  
Kaneaki Tsuzaki

The structural recrystallization mechanisms operating in an Fe – 27%Cr – 9% Ni dual-phase (ferrite-austenite) stainless steel after large strain processing to total strain of 4.4 were investigated in the temperature range of 400-700oC. The severe deformation resulted in the development of an ultrafine grained microstructure consisting of highly elongated grains/subgrains with transverse dimensions of 160 nm and 130 nm in ferrite and austenite, respectively. The annealing mechanism operating in ferrite phase was considered as continuous recrystallization, which involved recovery leading to the development of essentially polygonized microstructure. On the other hand, the mechanism of discontinuous nucleation took place at an early recrystallization stage in austenite phase.


2018 ◽  
Vol 9 (3) ◽  
pp. 281-295 ◽  
Author(s):  
Patricia Raposo ◽  
André Furtado ◽  
António Arêde ◽  
Humberto Varum ◽  
Hugo Rodrigues

Purpose The infill masonry walls in recent worldwide earthquakes have shown that it is necessary to conduct further studies to characterize the behavior of existing buildings and, in particular, of infill masonry walls under seismic activity. The lack of characterization studies of infill walls made by concrete blocks justifies the investigation reported herein, which includes experimental tests on sample sets to evaluate the mechanical properties of masonry components (units and mortar) and assemblages (wallets) made with masonry units from Faial. For the later, normal compressive, diagonal tensile/shear and out-of-plane flexural strengths were obtained according to standard procedures, the results of which are presented in the manuscript. The paper aims to discuss these issues. Design/methodology/approach One experimental campaign was conducted with the aim to mechanically characterize concrete blocks masonry samples. Several experimental tests were carried out in full-scale masonry concrete wallets according to the constructive methodology used. Findings Based on the data obtained from the mechanical characterization tests of the concrete masonry blocks, it can be seen that under simple compression, the masonry specimens’ average resistance is about 6 times superior than the average resistance to diagonal shear/tension, while the stiffness is almost doubled. In simple compression tests, it was observed that the masonry specimens cracked in areas of higher drilling of the blocks. In the tensile tests by diagonal compression, it was found that the test specimens were mainly fissured by the block/mortar joint interfaces, following the delineation of settlement and top joints. Originality/value There are no experimental results available in the literature for this type of bricks that can contribute to the development of numerical studies.


Author(s):  
A Belyakov ◽  
M Odnobokova ◽  
Z Yanushkevich ◽  
M Nazarova ◽  
R Kaibyshev

Sign in / Sign up

Export Citation Format

Share Document