Effects of Anodizing Time on Anodizing of Mg-Al Alloy in Alkaline Solution

2006 ◽  
Vol 510-511 ◽  
pp. 686-689
Author(s):  
Seong Jong Kim ◽  
Jeong Il Kim

This paper investigated the effects of anodizing time on the formation of anodic oxide films on a Mg-Al alloy in alkaline solution. The thickness of the anodic oxide film was increased by increasing the time required to generate the active dissolution reaction. When anodizing at various anodizing time, the potential after passivity increased with time, which implies growth in film thickness. When the anodizing time was varied, the quantity of oxygen increased with time in the white areas (the film), i.e., more film was observed in the SEM and EDX analyses.

2007 ◽  
Vol 544-545 ◽  
pp. 291-294
Author(s):  
Seong Jong Kim ◽  
Jeong Il Kim

We studied the effects of solution RPM, bath temperature, and time in anodizing AZ91 under a constant current density of 750 mA/cm2 in a 1 M NaOH solution. In general, increasing the anodizing time, RPM, and temperature of the bath improved the corrosion resistance. The thickness of the anodic oxide film likely grew by increasing the time required to generate the active dissolution reaction. When anodizing at 750 mA/cm2, we evaluated a 300–3600-s range in anodizing time, 0–1500 RPM, and 296–373 K bath temperatures, and determined that 3600 s, 1500 RPM, and 373 K comprised the optimum conditions.


2005 ◽  
Vol 486-487 ◽  
pp. 125-128 ◽  
Author(s):  
Seong Jong Kim ◽  
Seok Ki Jang ◽  
Jeong Il Kim

The effects of the duration of potentiostatic anodizing on the corrosion resistance and surface morphology of anodic oxide films formed on Mg-Al alloy (AZ91) in 1 M NaOH were investigated. With the formation of an anodic film, the current density decreased gradually, started to stabilize at 300 s, and was relatively constant at 600 s. These results may be related to the increased time for catalysis of the active dissolution reaction, which not only enlarges the area covered by the anodic film, but also produces a more coherent, thicker film. The reference corrosion potentials of the anodic oxide film for AZ91 shifted in the noble direction with time. In general, the corrosion resistance characteristics were improved with anodizing time.


2018 ◽  
Vol 941 ◽  
pp. 1194-1197 ◽  
Author(s):  
Naoya Miyakita ◽  
Natsuki Tanigaki ◽  
Taiki Morishige ◽  
Toshihide Takenaka

Anodic oxidation of Mg-Li-Al alloys using phosphoric acid-based bath were processed to obtain the corrosion-proof surface coating. The specimen oxidized at low voltage anodically dissolved without the formation of oxidized film. Anodic oxidation film could be formed at higher voltage due to thin layer preferentially formed on tthe active surface, this layer develops to stable thick film. There were no significant differences in film thickness between LA141 and LA143 alloys.


2010 ◽  
Vol 60 (11) ◽  
pp. 602-607 ◽  
Author(s):  
Tomoharu Yamamoto ◽  
Hiroomi Tanaka ◽  
Masahiro Fujita ◽  
Hidetaka Asoh ◽  
Sachiko Ono

Author(s):  
Michio Ashida ◽  
Yasukiyo Ueda

An anodic oxide film is formed on aluminum in an acidic elecrolyte during anodizing. The structure of the oxide film was observed directly by carbon replica method(l) and ultra-thin sectioning method(2). The oxide film consists of barrier layer and porous layer constructed with fine hexagonal cellular structure. The diameter of micro pores and the thickness of barrier layer depend on the applying voltage and electrolyte. Because the dimension of the pore corresponds to that of colloidal particles, many metals deposit in the pores. When the oxide film is treated as anode in emulsion of polyelectrolyte, the emulsion particles migrate onto the film and deposit on it. We investigated the behavior of the emulsion particles during electrodeposition.Aluminum foils (99.3%) were anodized in either 0.25M oxalic acid solution at 30°C or 3M sulfuric acid solution at 20°C. After washing with distilled water, the oxide films used as anode were coated with emulsion particles by applying voltage of 200V and then they were cured at 190°C for 30 minutes.


Vacuum ◽  
2021 ◽  
pp. 110265
Author(s):  
Munenori Yoshida ◽  
Hiromi Yamanaka ◽  
Kenta Tomori ◽  
Sergei Kulinich ◽  
Syuuichi Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document