Characterization of Ageing Products in AA6111 Using Dynamic Dislocation-Defect Analysis

2006 ◽  
Vol 519-521 ◽  
pp. 777-782
Author(s):  
Shigeo Saimoto ◽  
S. Subbaiyan ◽  
C. Gabryel

In dynamic dislocation-defect analysis, the thermodynamic deformation-mode signatures are examined as the ageing proceeds. In this method, the activation volume (ν) and the mean slip distance (λ) is simultaneously determined with the flow stress (τ) such that the inverse workhardening slope (1/θ) can be plotted versus b2λ/ν where b is the Burgers vector. The slope of this almost linear locus is directly proportional to the activation distance (d). Calibration with a model alumina-dispersed high conductivity copper reveals that punched-out loops are produced up to failure and is represented by a linear locus from 0.1 to 11 % strain. Artificial ageing of AA6111 at 180°C follows this pattern but the naturally-aged specimen manifest a distinctly different signature which shows a transition as the GP zone-type precipitates are sheared. Furthermore by selecting a suitable tensile-test temperature below 250K, the particle size and volume fraction can be determined if particle shearing does not take place. The optimum size and volume fraction necessary for sufficient strength and ductility can be assessed using this method.

Author(s):  
L. Westfall ◽  
B. J. Diak ◽  
M. A. Singh ◽  
S. Saimoto

Crystalline defects other than the essential dislocations are produced by dislocation intersections resulting in debris, which can transform into loops, point defects, and∕or nanovoids. The stress concentrations ahead of slip clusters promote void formation leading to incipient cracks. To evaluate the progression of these processes during deformation, dynamic dislocation-defect analysis was applied to nominally pure aluminum, Al–Mg, and Al–Cu alloys. In the case of nanovoid formation, small angle X-ray scattering (SAXS) was used to quantitatively assess if the void size and its volume fraction can be determined to directly correlate with the measured thermodynamic response values. The SAXS signal from the nanovoids in nominally pure aluminum is distinctly measurable. On the other hand, thermomechanical processing of even nominally pure aluminum results in the formation of nanoprecipitates, which requires future calibration.


2010 ◽  
Vol 638-642 ◽  
pp. 1995-2000 ◽  
Author(s):  
Reny Angela Renzetti ◽  
M.J.R. Sandim ◽  
Hugo Ricardo Zschommler Sandim ◽  
K.T. Hartwig ◽  
Heide H. Bernardi ◽  
...  

Polycrystalline iron was deformed by eight ECAE passes using the route Bc to a total strain of 9.2. After deformation the material was annealed at temperatures up to 800oC. Scanning electron microscopy (SEM) and high-resolution electron backscatter diffraction (EBSD) were used to characterize both deformed and annealed structures. In the as-deformed state, the mean grain size is 650 nm and the volume fraction of high angle boundaries (VHAB) is 56%. Upon annealing there is a pronounced softening above 300oC. At the beginning of recrystallization, at about 400oC, the VHAB increases to 71%. The results indicate that discontinuous recrystallization is the main softening mechanism in severely deformed iron.


2007 ◽  
Vol 539-543 ◽  
pp. 2192-2197 ◽  
Author(s):  
Shigeo Saimoto

Measurements of the activation volume and mean slip distance were used in the dynamic dislocation-defect analysis to reveal the dislocation-obstacle evolution with strain. Due to the large effect of point defect mobility above 250 K on the strain rate sensitivity, fine-grained Al specimens with the grain-boundaries sealed and unsealed as vacancy sinks were tested at 300 K as the reference behaviour. The activation distance diagrams revealed that the artificially aged products in AA6111 and naturally aged extruded AA6063 can be used to examine the effect of chopping-up of particles on the ductility of the samples. Thus a means to examine strength-structure-ductility of specific products have been devised.


2015 ◽  
Vol 766-767 ◽  
pp. 399-404
Author(s):  
N. Harish ◽  
S. Hamritha ◽  
S. Kiran Aithal

Present work is focused on Horizontal centrifugal casting process, by which a wear resistant material with considerable strength can be designed. A material of heterogeneous microstructure designed in which a high volume fraction of hard particles is dispersed at the inner surface, where better wear properties are needed, and a gradually decreasing lower volume fraction of hard particles at the outer surface. By this, a better strength and ductility will be achieved at the desired surfaces. The present work is focused on the preparation of cylinder liners using centrifugal casting for Al-17wt%Si. These cylinder liners are characterized for Microstructure, Hardness, Tensile strength and Wear.


2015 ◽  
Vol 647 ◽  
pp. 180-187 ◽  
Author(s):  
Tereza Uhlířová ◽  
Eva Gregorová ◽  
Willi Pabst

In this work we demonstrate the application of stereology-based image analysis for the characterization of highly porous cellular ceramics (alumina foams) prepared by biological foaming with yeast and subsequent drying (80-105 °C) and firing (1570 °C). It is shown that the ceramics prepared usually have total porosities in the range 78-84 % and that the porosities made up by large pores (volume fraction of foam bubbles) are usually in the range 58-75 %. Further it is shown that the mean chord length and the Jeffries size, i.e. pore size measures related to the interface density and the mean curvature integral density, respectively, are relatively close to each other (usually 0.8-1.4 and 0.8-1.2 mm) with a ratio close to unity (0.9-1.3) and that the mean surface-to-surface distance of pores gives a realistic picture of the average pore wall thickness (usually 0.46-0.69 mm). Using a special processing variant (excess ethanol addition) it is possible to obtain microstructures with lower porosity (total porosity 68-70 %, foam bubble volume fractions 50-56 %) and smaller pore size (approx. 0.5 mm). Absolute errors are calculated using normalized deviations corresponding to 95 % reliability in the Student distribution and the standard errors for the quantities in question (both observed and estimated). Relative errors are found to be below 12 % when the number of measurements is of order 400-1000.


REVISTA FIMCA ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. 28-31
Author(s):  
Darlan Darlan Sanches Barbosa Alves ◽  
Victor Mouzinho Spinelli ◽  
Marcos Santana Moraes ◽  
Carolina Augusto De Souza ◽  
Rodrigo da Silva Ribeiro ◽  
...  

Introdução: O estado de Rondônia se destaca como tradicional produtor de café, sendo o segundo maior produtor brasileiro de C. canephora. No melhoramento genético de C. canephora, a seleção de plantas de elevada peneira média está associada à bebida de qualidade superior. Objetivos: O objetivo desse estudo foi avaliar a variabilidade genética de clones de C. canephora para o tamanho dos grãos, mensurado a partir da avaliação da peneira média (PM). Materiais e Métodos: Para isso, foi conduzido ao longo de dois anos agrícolas experimento no campo experimental da Embrapa no município de Ouro Preto do Oeste-RO, para a avaliação da peneira média de 130 genótipos (clones) com características das variedades botânicas Conilon, Robusta e híbridos intervarietais. O delineamento experimental utilizado foi de blocos ao acaso, com quatro repetições de quatro plantas por parcela. Resultados: Não houve resultados significativos para a interação clones X anos, indicando uma maior consistência no comportamento das plantas ao longo do tempo. Porém foram observadas diferenças significativas para o tamanho dos grãos entre os genótipos avaliados, possibilitando selecionar genótipos superiores. Conclusão: Os genótipos agruparam-se em cinco classes de acordo com o teste de média, subsidiando a caracterização de um gradiente de variabilidade da característica avaliada ABSTRACTIntroduction: Coffea canephora accounts for approximately 35% of the world's coffee production. The state of Rondônia stands out as a traditional coffee producer, being the second largest Brazilian producer of C. canephora. In the classical genetic improvement of C. anephora, the selection of plants of high average sieve is associated with a drink of superior quality. Objectives: The objective of this udy was to evaluate the genetic variability of Coffea canephora clones for the agronomic medium sieve (PM). Materials and Methods: The experiment was conducted in the experimental field of Embrapa, municipality of OuroPreto do Oeste-RO, located at coordinates 10º44'53 "S and 62º12'57". One hundred thirty genotypes (clones) of botanical characteristics Conilon, Robusta and intervarietal hybrids were evaluated in the agricultural years 2013-2014 and 2014-2015. The experimental design was a randomized block design with four blocks and four plants per plot, spacing 3.5 x 1.5 meters between plants. Results: Significant difference was found for the grain size. According to the F test, at 5% probability, the genotypes were grouped into five classes according to the mean test. Conclusion: The results obtained subsidized the characterization of a variability gradient of the evaluated trait.


1983 ◽  
Vol 48 (8) ◽  
pp. 2232-2248 ◽  
Author(s):  
Ivo Roušar ◽  
Michal Provazník ◽  
Pavel Stuhl

In electrolysers with recirculation, where a gas is evolved, the pumping of electrolyte from a lower to a higher level can be effected by natural convection due to the difference between the densities of the inlet electrolyte and the gaseous emulsion at the outlet. An accurate balance equation for calculation of the rate of flow of the pumped liquid is derived. An equation for the calculation of the mean volume fraction of bubbles in the space between the electrodes is proposed and verified experimentally on a pilot electrolyser. Two examples of industrial applications are presented.


Sign in / Sign up

Export Citation Format

Share Document