Study on the Multi-Phase and Multi-Scale Nanocomposite Ceramic Tool Material

2006 ◽  
Vol 532-533 ◽  
pp. 245-248 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Xin Ying Teng

An advanced ceramic cutting tool material Al2O3/TiC/TiN is developed by means of adding micro-scale TiC particle and nano-scale TiN particle dispersion. With an optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite may get both higher flexural strength and fracture toughness, especially the fracture toughness may reach to 7.8 MPa·m1/2. The micro-scale TiC particle will form the framework microstructure with other particle and the particles will inlay each other. That is why the flexural strength of Al2O3/TiC composite is improved. Another phase such as nano-scale TiN may lead to fining the grains further more, and promote the sintering to get higher density. The uniform and densified microstructure is obtained, the coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN can result in remarkable strengthening and toughening effect.

Author(s):  
C. Z. Huang ◽  
H. L. Liu ◽  
J. Wang ◽  
Z. W. Liu

The single nano-scale and multi-phase nanocomposite ceramic materials including Al2O3/Al2O3n/SiCn and Al2O3/Ti(C0.7N0.3)n/SiCn are successfully fabricated. Their mechanical properties are better than those of the single-phase alumina material and conventional alumina matrix materials. The multi-scale and single-phase nanocomposite ceramic tool material Al2O3/SiCμ/SiCn is also successfully fabricated. Its flexural strength and fracture toughness is higher than those of single-scale materials Al2O3/SiCμ and Al2O3/SiCn. The multi-scale and multi-phase nanocomposite ceramic tool material Al2O3/TiCμ/TiNn is finally developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix, which can get higher flexural strength and fracture toughness than those of Al2O3/TiC ceramic tool material without nano-scale TiN particle. The coexistent function of nano-scale Al2O3 or Ti(C0.7N0.3), nano-scale SiC and TiN can reduce the sintering temperature and sintering duration time as well as the grain size, and improve the material densification and mechanical properties. The nano-scale SiC grains locating along the grain boundary and inside the micro-scale alumina can form the hybria intergranular-intragranular microstructure which can result in hybria intergranular-transgranular fracture and improve the mechanical properties of the ceramic material. Crack deflection, forking and bridging effects are the main cause for improving the fracture toughness of the materials including Al2O3/Ti(C0.7N0.3)n/SiCn and Al2O3/TiCμ/TiNn.


2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2006 ◽  
Vol 315-316 ◽  
pp. 118-122 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Bing Qiang Liu

An advanced ceramic cutting tool material was developed by means of micro-scale SiC particle cooperating with nano-scale SiC particle dispersion. With the optimal dispersing and fabricating technology, this multi-scale nanocomposite may get both higher flexural strength and fracture toughness than that of the single-scale composite. The improved mechanical properties may be mainly attributed to the inter/intragranular microstructure with a lot of micro-scale SiC particles located on the grain boundary and a few nano-scale SiC particles located in the matrix grain. Because of the thermal expansion mismatch between SiC and Al2O3 resulting in the compressive stress on the SiC/Al2O3 interface, the interface bonding strength between Al2O3 and SiC was reinforced, which can compel the crack propagating into the relatively weak matrix when meeting the SiC particle on the boundary; while the alumina grain boundary is not the same strong as the SiC/Al2O3 interface and the Al2O3 grain, therefore the crack propagates sometimes along the Al2O3 grain boundaries and sometimes through the grains, when reaching to the nano-scale SiC particle inside the matrix, the crack was pinned and then deflected to the sub-grainboundaries. These coexisting transgranular and intergranular fracture mode induced by micro-scale and nano-scale SiC and the fining of matrix grain derived from the nano-scale SiC resulted in the remarkable strengthening and toughening effect.


2006 ◽  
Vol 532-533 ◽  
pp. 37-40 ◽  
Author(s):  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Li Qiang Xu ◽  
Sui Lian Wang ◽  
Han Lian Liu

Advanced Ti(C, N) matrix cermet tool materials with higher mechanical properties are successfully developed by dispersing nano-scale Al2O3 powder into the micro-scale Ti(C, N) matrix and Ni-Mo bonding phases powder. The effect of the content of nano-scale alumina on the microstructure and mechanical properties of micro-scale Ti(C, N) matrix cermet tool materials are investigated. The research results show that a type of Ti(C, N) matrix cermet tool material has the most optimal flexural strength of 900MPa, Vickers hardness of 17.4GPa and fracture toughness of 9.95MPa.m1/2 when the content of nano-scale alumina is 12% in term of mass. It is found from the microstructure analysis that the main reason of the mechanical properties improvement is the grain fining effect caused by nano-scale Al2O3.


2013 ◽  
Vol 770 ◽  
pp. 308-311 ◽  
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Zhao Qiang Chen ◽  
Guang Yong Wu

A new nanomicro composite self-lubricating ceramic tool material was prepared with vacuum hot pressing technique. The effect of nanoAl2O3 powders on the microstructure and mechanical properties of nanomicro composite self-lubricating ceramic tool material was investigated. With the increase of nanoAl2O3 content, the hardness and fracture toughness first up then down. When the nanoAl2O3 content is 4 vol.%, the flexural strength, hardness and fracture toughness reaches 562 MPa, 8.46 MPa·m1/2 and 18.95 GPa, respectively. The microstructure and mechanical property of nanomicro composite self-lubricating ceramic tool material can be improved by the grain refinement strengthening of nanoAl2O3.


2004 ◽  
Vol 471-472 ◽  
pp. 321-325 ◽  
Author(s):  
Jing Sun ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Sui Lian Wang

In this paper, 3mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and TiN/3Y-TZP(adding TiN particles to 3Y-TZP) composites were fabricated by hot-pressing technique. Phase composition, microstructure and mechanical properties of the composites were investigated. It is shown that the flexural strength, fracture toughness and Vickers hardness of TiN/3Y-TZP was significantly improved by the addition of TiN particles compared with 3Y-TZP. The flexural strength of ZYT2 (20wt% TiN addition) is 1318 MPa. The fracture toughness of ZYT4 (40wt% TiN addition) is 16.8MPa·m1/2. The toughening and strengthening mechanisms were analyzed. The XRD results show that the additing of TiN can hinder the transformation from tetragonal phase to monoclinic phase of 3Y-TZP during fabrication process.


2007 ◽  
Vol 359-360 ◽  
pp. 329-334 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Xin Ying Teng ◽  
Hui Wang

The new thought for designing the multi-phase and multi-scale nanocomposites was proposed to improve the comprehensive mechanical properties. Multi-phase and multi-scale particles are added to the matrix, and one of the additives is nano-scale particle, thus the comprehensive mechanical properties can be improved by the synergic effects of micro-scale toughening, nano-scale strengthening and mutual benefit between multi-phases. The ideal microstructure of multi-phase and multi-scale nanocomposites was designed. With this microstructure, the trans/intergranular fracture modes can be formed, which will consume more fracture energy during the crack propagation, therefore, both the flexural strength and fracture toughness can be improved. An advanced ceramic tool material has been fabricated based on this new thought.


2013 ◽  
Vol 761 ◽  
pp. 83-86
Author(s):  
Hideaki Sano ◽  
Junichi Morisaki ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

Effects of carbon nanotubes (CNT) addition on mechanical properties, electric conductivity and oxidation resistance of CNT/Al2O3-TiC composite were investigated. It was found that flexural strength, Young’s modulus and fracture toughness of the composites were improved by addition of more than 2 vol%-CNT. In the composites with more than 3 vol%-CNT, the oxidation resistance of the composite was degraded. In comparison with Al2O3-26vol%TiC sample as TiC particle-percolated sample, the Al2O3-12vol%TiC-3vol%CNT sample, which is not TiC particle-percolated sample, shows almost the same mechanical properties and electric conductivity, and also shows thinner oxidized region after oxidation at 1200°C due to less TiC in the composite.


Sign in / Sign up

Export Citation Format

Share Document