Study on the Multi-Scale Nanocomposite Ceramic Tool Material

2006 ◽  
Vol 315-316 ◽  
pp. 118-122 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Bing Qiang Liu

An advanced ceramic cutting tool material was developed by means of micro-scale SiC particle cooperating with nano-scale SiC particle dispersion. With the optimal dispersing and fabricating technology, this multi-scale nanocomposite may get both higher flexural strength and fracture toughness than that of the single-scale composite. The improved mechanical properties may be mainly attributed to the inter/intragranular microstructure with a lot of micro-scale SiC particles located on the grain boundary and a few nano-scale SiC particles located in the matrix grain. Because of the thermal expansion mismatch between SiC and Al2O3 resulting in the compressive stress on the SiC/Al2O3 interface, the interface bonding strength between Al2O3 and SiC was reinforced, which can compel the crack propagating into the relatively weak matrix when meeting the SiC particle on the boundary; while the alumina grain boundary is not the same strong as the SiC/Al2O3 interface and the Al2O3 grain, therefore the crack propagates sometimes along the Al2O3 grain boundaries and sometimes through the grains, when reaching to the nano-scale SiC particle inside the matrix, the crack was pinned and then deflected to the sub-grainboundaries. These coexisting transgranular and intergranular fracture mode induced by micro-scale and nano-scale SiC and the fining of matrix grain derived from the nano-scale SiC resulted in the remarkable strengthening and toughening effect.

2006 ◽  
Vol 532-533 ◽  
pp. 245-248 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Xin Ying Teng

An advanced ceramic cutting tool material Al2O3/TiC/TiN is developed by means of adding micro-scale TiC particle and nano-scale TiN particle dispersion. With an optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite may get both higher flexural strength and fracture toughness, especially the fracture toughness may reach to 7.8 MPa·m1/2. The micro-scale TiC particle will form the framework microstructure with other particle and the particles will inlay each other. That is why the flexural strength of Al2O3/TiC composite is improved. Another phase such as nano-scale TiN may lead to fining the grains further more, and promote the sintering to get higher density. The uniform and densified microstructure is obtained, the coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN can result in remarkable strengthening and toughening effect.


2007 ◽  
Vol 359-360 ◽  
pp. 329-334 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Xin Ying Teng ◽  
Hui Wang

The new thought for designing the multi-phase and multi-scale nanocomposites was proposed to improve the comprehensive mechanical properties. Multi-phase and multi-scale particles are added to the matrix, and one of the additives is nano-scale particle, thus the comprehensive mechanical properties can be improved by the synergic effects of micro-scale toughening, nano-scale strengthening and mutual benefit between multi-phases. The ideal microstructure of multi-phase and multi-scale nanocomposites was designed. With this microstructure, the trans/intergranular fracture modes can be formed, which will consume more fracture energy during the crack propagation, therefore, both the flexural strength and fracture toughness can be improved. An advanced ceramic tool material has been fabricated based on this new thought.


2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2011 ◽  
Vol 189-193 ◽  
pp. 4227-4230
Author(s):  
Hong Yan ◽  
Zhi Min Huang

SiCp/AZ61 composites reinforced with SiC particles were fabricated by semi-solid stirring-melt casting technique. The creep properties of the composites have been studied by dynamic mechanical thermal analysis, micro-structural and XRD observation. The results show that the matrix grains were refined obviously at high temperature with SiC particles introducing and the creep properties of SiCp/AZ61 composites were improved comparing with AZ61 alloy. SiC particles were substituted for Mg17Al12 phase that was easily intenerated at high temperature on grain boundaries. The pinning of SiC particles prevents dislocation and slip of grain boundary at high temperature.


2005 ◽  
Vol 475-479 ◽  
pp. 2835-2840 ◽  
Author(s):  
Meiyan Zhan ◽  
Zhen Hua Chen ◽  
Hong Ge Yan ◽  
Weijun Xia

The evolution of SiC particle distribution in spray codeposition SiCp/7075Al composite during extrusion was investigated. A unique metallurgical pattern designated as ring- and band-pattern in the cross section of the extruded products occurred which comprises areas with higher and lower concentrations of SiC particles. The factors that contributed to the evolution of SiC particles distribution feather during plastic deformation were analyzed. The difference of flowability between the matrix and SiC particles was supposed to be the main factor accounting for the forming of the ring- and band-pattern. In addition, concentration difference of SiC particles between different deposition layers will also contribute to the forming of the ring- and band-pattern. A simple model was proposed to describe the evolution of SiC particle distribution during extrusion.


2008 ◽  
Vol 33-37 ◽  
pp. 731-736
Author(s):  
Maigefeireti Maitireyimu ◽  
Masanori Kikuchi ◽  
Mamtimin Gheni

This article presents a modified FEM Superpostion method (S-FEM) for composite material analysis. Around the reinforcement body, failure and interface fracture may occur in the matrix. So the S-FEM was employed to detect the stress distribution around the reinforcement. One particle in big matrix is studied. Area of twice of particle radium is selected as local field.First, the feasibility of modified S-FEM is verified. And by symmetric analysis, geometric distribution of particle which may influence on the strength of composite material were discussed.


2012 ◽  
Vol 271-272 ◽  
pp. 12-16 ◽  
Author(s):  
Zeng Lei Ni ◽  
Ai Qin Wang ◽  
Jing Pei Xie

This paper studied the combined effects of particle size and distribution on the mechanical properties of the SiC particle reinforced Al-30Si alloy composites. The microstructure of experimental material was analyzed by SEM, the tensile strength and physical properties were examined. The results show that, with the increase of the SiC particle size in the composites, the clustering degree of the SiC particles decreases in the matrix, the SiC particles distribute more ununiformly. The tensile strength is influenced by the SiC particle size, the tensile strength of the composite reinforced by 13μm sized SiC particles is the highest.


2019 ◽  
Vol 827 ◽  
pp. 263-268
Author(s):  
Tsivolas Eleftherios ◽  
Leonidas N. Gergidis ◽  
Alkiviadis S. Paipetis

A cross-ply fiber-reinforced composite in uniaxial tension is modelled using a mesoscale and a micro-scale approach comparing the results from both the analyses. The use of multi-scale modelling gives directly the macroscopic constitutive behaviour of the structures based on its microscopically heterogeneous representative volume element (RVE). In the meso-scale approach the material of each layer is modelled as a homogeneous transversely isotropic material whose properties resulted from a numerical homogenization analysis. One of the main advantages of micro-scale modelling is the ability to simulate damage mechanisms such as matrix cracking, delaminations of the matrix-fiber interface and fibre-damage. In the first part of this study, analytical and numerical homogenization schemes are compared. RVEs of continuous fibre and short-fibre reinforced composites are created, homogenized numerically and compared with the widespread analytical scheme of Mori-Tanaka based on Eshelby’s solution of the single inclusion problem. In the second part, results’ comparison between the simulations of both scales is performed. In the meso-scale model stochasticity has been introduced, assigning interfacial strength following a normal distribution, in order to predict cracking initiation, propagation and saturation at the matrix material. The stresses at the crack tips are compared with the stress fields around the cracks from the micro-scale analysis and the results are in good agreement.


2013 ◽  
Vol 347-350 ◽  
pp. 1158-1162
Author(s):  
Hai Ying Zhang ◽  
Ling Bai ◽  
Kui Yu Ma ◽  
Shu Zhen Song

SiC/Fe composite was prepared using electromagnetic stirring approach. The distribution of SiC particles in steel matrix was affected, in a different manner, by stirring power and stirring time in three test particle addition methods. When particles were blown from bottom of molten steel by airflow, the dispersion coefficient of particles was lower with reduced stirring power and prolonged stirring time. In contrast, when particles were dispersed directly by funnel or injected a block premade by particles and a small amount of matrix, the particle dispersion coefficient was increased following the decrease of stirring power or stirring time. This study provided a guidance of how to achieve a more uniform distribution of SiC particles in steel matrix.


Sign in / Sign up

Export Citation Format

Share Document