scholarly journals Cutting Force in Stone Machining by Diamond Disk

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
S. Turchetta

Stone machining by diamond disk is a widespread process to manufacture standard products, such as tiles, slabs, and kerbs. Cutting force and energy may be used to monitor stone machining. Empirical models are required to guide the selection of cutting conditions. In this paper, the effects of cutting conditions on cutting force and cutting energy are related to the shape of the idealized chip thickness. The empirical models developed in this paper can be used to predict the variation of the cutting energy. Therefore these models can be used to guide the selection of cutting conditions. The chip generation and removal process has been quantified with the intention of assisting both the toolmaker and the stonemason in optimising the tool composition and cutting process parameters, respectively.

2006 ◽  
Vol 532-533 ◽  
pp. 753-756 ◽  
Author(s):  
Jun Zhao ◽  
Xing Ai ◽  
Zuo Li Li

The Finite Element Method (FEM) has proven to be an effective technique to investigate cutting process so as to improve cutting tool design and select optimum cutting conditions. The present work focuses on the FEM simulation of cutting forces in high speed cutting by using an orthogonal cutting model with variant undeformed chip thickness under plane-strain condition to mimic intermittent cutting process such as milling. High speed cutting of 45%C steel using uncoated carbide tools are simulated as the application of the proposed model. The updated Lagrangian formulation is adopted in the dynamic FEM simulation in which the normalized Cockroft and Latham damage criterion is used as the ductile fracture criterion. The simulation results of cutting force components under different cutting conditions show that both the thrust cutting force and the tangential cutting force increase with the increase in undeformed chip thickness or feed rate, whereas decrease with the increase in cutting speed. Some important aspects of modeling the high speed cutting are discussed as well to expect the future work in FEM simulation.


Author(s):  
Zongwei Ren ◽  
Zhenglong Fang ◽  
Takuhiro Arakane ◽  
Toru Kizaki ◽  
Yannan Feng ◽  
...  

Abstract Power skiving is a promising method that can enhance the efficiency of gear machining. The machining mechanism is complicated due to several factors, such as the continuous variation in the rake angle and undeformed chip thickness. The tool wear process is also difficult to be evaluated due to the constantly varying in cutting conditions. Hence, to make a comprehensive understanding of the cutting process, we proposed a parametric modeling process based on the kinematics of power skiving. In this model, the undeformed cutting chip was calculated in each pass and shows the consistency with deformed cutting chip in experiments. The effective rake angle and undeformed cutting chip thickness were defined, calculated, and displayed on undeformed cutting chip for a better understanding of the cutting process. The cutting force and tool crater wear were calculated by estimating the distribution of the stress and temperature on the rake face of the cutting tool. Multiple radial-feed experimental evaluations were conducted with the gears of construction vehicles. In the results, the predicted margin of the absolute error of the normal force on the rake face was under 5% in every pass. The wear distribution on the rake face is consistent with the superimposed tool-chip contact area. The results show high potential for the optimization of the cutting tool or cutting conditions in gear power skiving.


2005 ◽  
Vol 128 (3) ◽  
pp. 811-815 ◽  
Author(s):  
Sathyan Subbiah ◽  
Shreyes N. Melkote

The contribution of material separation in cutting ductile metals to the constant force component, and, hence, to the size effect in specific cutting energy is explored in this paper. A force-decomposition-based framework is proposed to reconcile the varied reasons given in literature for the size effect. In this framework, the cutting force is broken down into three components: one that is decreasing, another that is increasing, and the third that remains constant, with decreasing uncut chip thickness. The last component is investigated by performing orthogonal cutting experiments on OFHC copper at high rake angles of up to 70deg in an attempt to isolate it. As the rake angle is increased, the resulting experimental data show a trend toward a constant cutting-force component independent of the uncut chip thickness. Visual evidence of ductile tearing ahead of the tool associated with material separation leading to chip formation is shown. The measured constant force and the force needed for ductile crack extension are then compared.


2008 ◽  
Vol 375-376 ◽  
pp. 31-35
Author(s):  
Jun Zhou ◽  
Jian Feng Li ◽  
Jie Sun ◽  
Zhi Ping Xu

In machining, the size effect is typically characterized by a non-linear increase in the specific cutting energy (or specific cutting force) as the uncut chip thickness is decreased. A finite element model of orthogonal micro-cutting was established to study the influence of tool edge radius on size effect when cutting 7050-T7451 aluminum alloy. Diamond cutting tool was used in the simulation. Specific cutting force and specific cutting energy are obtained through the simulation. The nonlinear scaling phenomenon is evident. The likely explanations for the size effect in small uncut chip thickness were discussed in this paper.


2011 ◽  
Vol 325 ◽  
pp. 621-626 ◽  
Author(s):  
Keivan Dadkhahipour ◽  
Jun Wang

An experimental investigation of the material removal process in abrasive waterjet (AWJ) milling is presented. The experiment was conducted on an amorphous glass for milling channels of controlled depth. It is found that the channels are formed through four different zones, i.e. an opening zone, a steady-cutting zone, a unsteady-cutting zone and a finishing zone. The effect of process parameters on the channel formation process and the major milling performance measures (depth of cut and material removal rate) is then discussed. It is found that AWJ milling is a viable process for machining applications and the milling performance can be reasonably controlled through the selection of process parameters.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2522 ◽  
Author(s):  
Ahmed Elkaseer ◽  
Ali Abdelaziz ◽  
Mohammed Saber ◽  
Ahmed Nassef

This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.


Author(s):  
Sathyan Subbiah ◽  
Shreyes N. Melkote

A partial explanation of the size-effect in the specific cutting energy in micro-cutting is provided in this paper. For a simple orthogonal cutting condition, with constant width of cut, the specific cutting energy is viewed as a ratio of the cutting force and the uncut chip thickness. Size-effect, i.e., an unbounded increase in the specific cutting energy with decrease in uncut chip thickness, will occur under two conditions: one, if a component of the cutting force remains constant with uncut chip thickness and two, if some component of the cutting force increases with the uncut chip thickness. Experiments have been performed at high rake angles in an attempt to isolate and detect the presence of the constant component of the cutting force. The trend confirming the presence of this component is reported and explained.


1988 ◽  
Vol 110 (4) ◽  
pp. 350-354 ◽  
Author(s):  
M. Tomizuka ◽  
S. Zhang

A mathematical model for predicting dynamics between the feedrate and cutting force in the lathe cutting process is presented. The model comes from combinations of a parameter identification technique and geometrical consideration for chip thickness time variation. The model prediction of transient responses is in good agreement with the experimental results. The model is used for tuning a PI controller for regulating the cutting force as well as to show performance limitations of the conventional PI controller. A simple adaptive control scheme that makes use of the model structure is proposed. Experimental results from laboratory evaluation of the proposed controllers are presented.


Author(s):  
Jinhua Zhou ◽  
Junxue Ren ◽  
Yong Jiang

The original Johnson–Cook equation fails to describe the significant thermal softening phenomenon of flow stress in cutting process of titanium alloy Ti6Al4V. Recently, some researchers developed some modified Johnson–Cook models of Ti6Al4V by introducing some additional parameters. But effective parameter identification method is unavailable in those research works. In this work, an inverse approach is developed to determine the additional parameters. A modified Johnson–Cook model with the hyperbolic tangent function is adopted, in which four unknown parameters need to be determined. The parameter assessment is taken as an optimization process based on the unequal division parallel-sided shear zone model. Along with the measured cutting force and chip thickness, the firefly algorithm is introduced to search for the parametric optimal solution. Those four parameters are determined when the difference between the predicted and experimental effective stress at shear plane reaches its minimum. The identified constitutive model is subsequently verified by finite element simulation of orthogonal cutting process, and compared with previous different material models. With the identified modified Johnson–Cook model, the serrated chip is observed in all the simulations. A good agreement between verification experiments and simulations is achieved. An acceptable prediction accuracy with an error of 10.28% on cutting force and an error of 18.12% on chip size is achieved.


Sign in / Sign up

Export Citation Format

Share Document