Microstructure and Mechanical Properties of Twin-Roll Strip Cast Mg Alloys

2007 ◽  
Vol 539-543 ◽  
pp. 119-126 ◽  
Author(s):  
Sung S. Park ◽  
Geun Tae Bae ◽  
Jung G. Lee ◽  
Dae H. Kang ◽  
Kwang Seon Shin ◽  
...  

Development of wrought Mg alloys, particularly in sheet form, is essential to support the growing interest for lightweight components in the automotive industry. However, development of Mg alloy sheets has been quite slow due to the complexity of sheet production originated from limited deformability of Mg. In this respect, twin-roll strip casting, a one-step processing of flat rolled products, can be an alternative for the production of Mg alloy sheets. In this study, AZ31 and experimental ZM series alloys are twin-roll strip cast into 2 mm thick sheets. The microstructure of the as-cast AZ31 alloy sheet consists of columnar zones near the roll side and equiaxed zones in the mid-thickness region. On the other hand, as-cast ZM series alloy sheets show equiaxed dendritic structure through the thickness of sheet. These alloys were subjected to various thermo-mechanical treatments and their tensile properties were evaluated. Twin-roll strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that twin-roll strip casting is a viable process for the fabrication of Mg alloy sheets. The experimental ZM series alloys have a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of twin-roll strip casting on microstructural refinement. It has been shown that the experimental ZM series alloys have superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by twin-roll strip casting.

2005 ◽  
Vol 475-479 ◽  
pp. 457-462 ◽  
Author(s):  
Sung S. Park ◽  
Young Min Kim ◽  
Dae H. Kang ◽  
Nack J. Kim

AZ31 and experimental ZMA611 alloys were strip cast into 2 mm thick strips. The as-cast AZ31 alloy strip consists of columnar dendrites. On the other hand, as-cast ZMA611 alloy strip shows equiaxed dendritic structure through the thickness of strip. These alloys were subjected to various thermomechanical treatments and their tensile properties were evaluated. Strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that strip casting is a viable process for the fabrication of Mg alloy strips. The ZMA611 alloy has a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of strip casting on microstructural refinement. It has been shown that the ZMA611 alloy has superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by strip casting.


2005 ◽  
Vol 488-489 ◽  
pp. 431-434 ◽  
Author(s):  
Sung S. Park ◽  
Dae H. Kang ◽  
Geun Tae Bae ◽  
Nack J. Kim

AZ31 and experimental ZMA611 alloys were strip cast into 2 mm thick strips. The as-cast AZ31 alloy strip consists of columnar dendrites. On the other hand, as-cast ZMA611 alloy strip shows equiaxed dendritic structure through the thickness of strip. Strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that strip casting is a viable process for the fabrication of Mg alloy strips. The ZMA611 alloy has a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of strip casting on microstructural refinement. It has been shown that the ZMA611 alloy has superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by strip casting.


2016 ◽  
Vol 49 (5) ◽  
pp. 1777-1785 ◽  
Author(s):  
T. Dorin ◽  
A. Taylor ◽  
K. Wood ◽  
J. Wang ◽  
P. D. Hodgson ◽  
...  

A series of three steel alloys with increasing Cu and S concentrations has been prepared by simulated direct strip casting. It was found that the rapid solidification that occurs during direct strip casting results in the formation of a high number density of fine MnS precipitates, while Cu was retained in solid solution above equilibrium concentration. Upon ageing the MnS particles were found to coarsen and increase in volume fraction, indicating that some S was retained in solid solution in the as-cast condition. Ageing also resulted in the precipitation of Cu-rich precipitates. A new method to determine precipitate composition from small-angle neutron scattering is presented. This methodology, in conjunction with atom-probe tomography, has been used to show that the composition of the Cu-rich precipitates depends on the alloy's bulk Cu content.


2018 ◽  
Vol 24 (5) ◽  
pp. 992-1001 ◽  
Author(s):  
Joon-Young Heo ◽  
Min-Seok Baek ◽  
Kwang-Jun Euh ◽  
Kee-Ahn Lee

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Qingshan Yang ◽  
Jiahong Dai ◽  
Sensen Chai ◽  
Daliang Yu ◽  
Bin Jiang ◽  
...  

The deformation behavior and microstructural evolution of twin-roll-casting AZ31 Mg alloy sheets were investigated via hot compression tests at 0°, 5°, and 10° from the normal direction. Compression strains of 5%, 15%, 25%, and 35% were employed at high temperatures of 450°C and 500°C. The flow stress as well as the difference in the flow stress associated with different sampling directions decreased when the temperature was increased. Furthermore, the volume fraction of dynamically recrystallized grains increased with increasing deformation, whereas the average grain size decreased. The DRX grain size and the volume fraction of dynamically recrystallized grains increased with increasing deformation temperature. During ultrahigh temperature compression, the effect of sampling direction on the compression microstructure is relatively small.


2006 ◽  
Vol 15-17 ◽  
pp. 333-338 ◽  
Author(s):  
Geun Tae Bae ◽  
Sung S. Park ◽  
Chang Gil Lee ◽  
Dong Yim Chang ◽  
Nack J. Kim

2010 ◽  
Vol 443 ◽  
pp. 45-50 ◽  
Author(s):  
Hyoung Wook Kim ◽  
Jae Hyeng Cho ◽  
Cha Yong Lim ◽  
Suk Bong Kang

High strength Al-Mg alloy strips with high Mg contents (5-10wt%Mg) were successfully fabricated by twin roll casting. In order to get a good surface quality of Al-Mg strips, an optimum process condition was investigated in this experiment. The morphology of the cast nozzle and the roll separate force during twin roll casting was important to improve the surface quality of the strip and homogeneity of the cast structure through the thickness. The size of intermetallic particle like Al-Fe compounds was reduced down to 1~2m due to a high cooling rate of Al melt during strip casting. In addition, the dendrite structure was very fine and the segregation of Al8Mg5 phase between grains was remarkably reduced. Therefore, the Al-Mg strips have good workability during additional cold/warm rolling processes. After annealing, the rolled sheets have superior tensile properties to a commercial high strength Al-Mg alloy sheet.


Materials ◽  
2016 ◽  
Vol 9 (6) ◽  
pp. 433 ◽  
Author(s):  
Dan Luo ◽  
Yue Pan ◽  
Hui-Yuan Wang ◽  
Li-Guo Zhao ◽  
Guo-Jun Liu ◽  
...  

JOM ◽  
2021 ◽  
Author(s):  
J. Victoria-Hernández ◽  
G. Kurz ◽  
J. Bohlen ◽  
S. Yi ◽  
D. Letzig

AbstractIn this work, the influence of twin-roll casting (TRC) speed on the microstructure of the through-thickness uniformity, centerline segregation, and surface quality of three wrought Mg alloys was investigated. The microstructural features of the AZ31, ZX11, and ZWK200 alloys produced at TRC speeds ranging from 1.8 m/min to 2.2 m/min (for the AZ31 and ZWK200), and 1.5–2.5 m/min (for the ZX11 alloy) were analyzed. There were clear differences in the microstructure uniformity depending on the alloy composition. Columnar grains coexisting with globular grains were found in the AZ31 and ZX11 alloys, whereas the ZWK200 alloy showed a homogeneous fine-grained microstructure characterized by a weaker texture even at the highest TRC speed used. While there is a tendency to reduce the centerline segregation as the TRC speed is decreased during casting of the AZ31 alloy, the formation of this defect cannot be prevented in the ZX11 and ZWK200 alloys by only varying the TRC speed.


Sign in / Sign up

Export Citation Format

Share Document