scholarly journals Complex precipitation phenomena in strip cast steels with high sulfur and copper contents

2016 ◽  
Vol 49 (5) ◽  
pp. 1777-1785 ◽  
Author(s):  
T. Dorin ◽  
A. Taylor ◽  
K. Wood ◽  
J. Wang ◽  
P. D. Hodgson ◽  
...  

A series of three steel alloys with increasing Cu and S concentrations has been prepared by simulated direct strip casting. It was found that the rapid solidification that occurs during direct strip casting results in the formation of a high number density of fine MnS precipitates, while Cu was retained in solid solution above equilibrium concentration. Upon ageing the MnS particles were found to coarsen and increase in volume fraction, indicating that some S was retained in solid solution in the as-cast condition. Ageing also resulted in the precipitation of Cu-rich precipitates. A new method to determine precipitate composition from small-angle neutron scattering is presented. This methodology, in conjunction with atom-probe tomography, has been used to show that the composition of the Cu-rich precipitates depends on the alloy's bulk Cu content.

2007 ◽  
Vol 539-543 ◽  
pp. 119-126 ◽  
Author(s):  
Sung S. Park ◽  
Geun Tae Bae ◽  
Jung G. Lee ◽  
Dae H. Kang ◽  
Kwang Seon Shin ◽  
...  

Development of wrought Mg alloys, particularly in sheet form, is essential to support the growing interest for lightweight components in the automotive industry. However, development of Mg alloy sheets has been quite slow due to the complexity of sheet production originated from limited deformability of Mg. In this respect, twin-roll strip casting, a one-step processing of flat rolled products, can be an alternative for the production of Mg alloy sheets. In this study, AZ31 and experimental ZM series alloys are twin-roll strip cast into 2 mm thick sheets. The microstructure of the as-cast AZ31 alloy sheet consists of columnar zones near the roll side and equiaxed zones in the mid-thickness region. On the other hand, as-cast ZM series alloy sheets show equiaxed dendritic structure through the thickness of sheet. These alloys were subjected to various thermo-mechanical treatments and their tensile properties were evaluated. Twin-roll strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that twin-roll strip casting is a viable process for the fabrication of Mg alloy sheets. The experimental ZM series alloys have a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of twin-roll strip casting on microstructural refinement. It has been shown that the experimental ZM series alloys have superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by twin-roll strip casting.


2005 ◽  
Vol 488-489 ◽  
pp. 431-434 ◽  
Author(s):  
Sung S. Park ◽  
Dae H. Kang ◽  
Geun Tae Bae ◽  
Nack J. Kim

AZ31 and experimental ZMA611 alloys were strip cast into 2 mm thick strips. The as-cast AZ31 alloy strip consists of columnar dendrites. On the other hand, as-cast ZMA611 alloy strip shows equiaxed dendritic structure through the thickness of strip. Strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that strip casting is a viable process for the fabrication of Mg alloy strips. The ZMA611 alloy has a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of strip casting on microstructural refinement. It has been shown that the ZMA611 alloy has superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by strip casting.


2012 ◽  
Vol 326-328 ◽  
pp. 477-481
Author(s):  
Tomasz Rzychoń

The paper presents results of DSC and microstructural investigations of Mg-6Al-1Ca-1Sr-0.3Mn (ACJ611) and Mg-8Al-3Ca-1Sr-0.2Mn (ACJ831) magnesium alloy in as cast condition. The microstructure of this alloy consists of aluminum in magnesium solid solution and two types of eutectic: α-Mg+Al2Ca and α-Mg+Al3Mg13Sr. The liquidus temperature of ACJ611 magnesium alloy is 613°C. The eutectic reactions L α-Mg+Al2Ca and Lα-Mg+Al3Mg13Sr occurs at 510°C and 502°C temperatures, respectively. The increase of aluminum and calcium content increases the volume fraction of Al2Ca phase, decreases the liquidus temperature and slightly increases the temperature of eutectic reactions.


2005 ◽  
Vol 475-479 ◽  
pp. 457-462 ◽  
Author(s):  
Sung S. Park ◽  
Young Min Kim ◽  
Dae H. Kang ◽  
Nack J. Kim

AZ31 and experimental ZMA611 alloys were strip cast into 2 mm thick strips. The as-cast AZ31 alloy strip consists of columnar dendrites. On the other hand, as-cast ZMA611 alloy strip shows equiaxed dendritic structure through the thickness of strip. These alloys were subjected to various thermomechanical treatments and their tensile properties were evaluated. Strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that strip casting is a viable process for the fabrication of Mg alloy strips. The ZMA611 alloy has a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of strip casting on microstructural refinement. It has been shown that the ZMA611 alloy has superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by strip casting.


Author(s):  
Jordi Marti ◽  
Timothy E. Howson ◽  
David Kratz ◽  
John K. Tien

The previous paper briefly described the fine microstructure of a mechanically alloyed oxide dispersion strengthened nickel-base solid solution. This note examines the fine microstructure of another mechanically alloyed system. This alloy differs from the one described previously in that it is more generously endowed with coherent precipitate γ forming elements A1 and Ti and it contains a higher volume fraction of the finely dispersed Y2O3 oxide. An interesting question to answer in the comparative study of the creep and stress rupture of these two ODS systems is the role of the precipitate γ' in the mechanisms of creep and stress rupture in alloys already containing oxide dispersoids.The nominal chemical composition of this alloy is Ni - 20%Cr - 2.5%Ti - 1.5% A1 - 1.3%Y203 by weight. The system receives a three stage heat treatment-- the first designed to produce a coarse grain structure similar to the solid solution alloy but with a smaller grain aspect ratio of about ten.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1556
Author(s):  
Zhao Li ◽  
Run Wu ◽  
Mingwei Li ◽  
Song-Sheng Zeng ◽  
Yu Wang ◽  
...  

High boron steel is prone to brittle failure due to the boride distributed in it with net-like or fishbone morphology, which limit its applications. The Quenching and Partitioning (Q&P) heat treatment is a promising process to produce martensitic steel with excellent mechanical properties, especially high toughness by increasing the volume fraction of retained austensite (RA) in the martensitic matrix. In this work, the Q&P heat treatment is used to improve the inherent defect of insufficient toughness of high boron steel, and the effect mechanism of this process on microstructure transformation and the change of mechanical properties of the steel has also been investigated. The high boron steel as-casted is composed of martensite, retained austensite (RA) and eutectic borides. A proper quenching and partitioning heat treatment leads to a significant change of the microstructure and mechanical properties of the steel. The net-like and fishbone-like boride is partially broken and spheroidized. The volume fraction of RA increases from 10% in the as-cast condition to 19%, and its morphology also changes from blocky to film-like. Although the macro-hardness has slightly reduced, the toughness is significantly increased up to 7.5 J·cm−2, and the wear resistance is also improved.


2012 ◽  
Vol 60 (13-14) ◽  
pp. 5049-5055 ◽  
Author(s):  
Peter J. Felfer ◽  
Chris R. Killmore ◽  
Jim G. Williams ◽  
Kristin R. Carpenter ◽  
Simon P. Ringer ◽  
...  

2018 ◽  
Vol 54 (2) ◽  
pp. 1769-1784 ◽  
Author(s):  
Lu Jiang ◽  
Ross K. W. Marceau ◽  
Thomas Dorin ◽  
Peter D. Hodgson ◽  
Nicole Stanford

2012 ◽  
Vol 191 ◽  
pp. 145-150 ◽  
Author(s):  
Michał Stopyra ◽  
Robert Jarosz ◽  
Andrzej Kiełbus

The paper presents analysis of section thickness’ influence on microstructure of Elektron 21 and QE22 magnesium alloys in the form of a stepped casting test. Solid solution grain size and volume fraction of eutectic areas were measured using light microscope and sterological methods. The results showed the significant increase of grain size caused by wall thickness and its slight decrease connected with the distance beetwen analysed section and the gating system. This relationship was confirmed using statistical methods. QE22 alloy demonstrated finer grain structure than Elektron 21 alloy as well as lesser susceptibility of grain size to solidification conditions


Author(s):  
Kenji Dohi ◽  
Kenji Nishida ◽  
Akiyoshi Nomoto ◽  
Naoki Soneda ◽  
Hiroshi Matsuzawa ◽  
...  

The effect of the neutron flux at high fluence on the microstructural and hardness changes of a reactor pressure vessel (RPV) steel was investigated. An accelerated test reactor irradiation of a RPV material, previously irradiated in commercial reactors, was carried out at the lowest possible neutron fluxes in order to obtain neutron fluences up to approximately 1×1020 n/cm2 (E>1MeV). State-of-the-art experimental techniques such as three-dimensional atom probe were applied to carry out advanced quantitative characterization of defect features in the materials. Results for the same material irradiated in both high and low flux conditions are compared. For neutron fluences above 6×1019 n/cm2 (E>1MeV) the difference in the neutron fluence dependence of the increase in hardness is not seen for any neutron flux condition. The volume fraction of solute atom clusters increases linearly with neutron fluence, and the influence of neutron flux is not significant. The component elements and the chemical composition of the solute atom clusters formed by the irradiation do not change regardless of the neutron fluence and flux. The square root of the volume fraction of the solute atom clusters is a good correlation with the increase in hardness.


Sign in / Sign up

Export Citation Format

Share Document