Change of Nanostructure in (Fe0.5Co0.5)72B20Si4Nb4 Metallic Glass on Annealing

2007 ◽  
Vol 539-543 ◽  
pp. 2077-2081 ◽  
Author(s):  
Akihiko Hirata ◽  
Yoshihiko Hirotsu ◽  
Kenji Amiya ◽  
Nobuyuki Nishiyama ◽  
Akihisa Inoue

Nanoscale structural change in (Fe0.5Co0.5)72B20Si4Nb4 bulk glassy alloy on annealing has been investigated using transmission electron microscopy. On annealing at temperatures above 773K, electron diffraction intensity analysis showed a clear structure change for a Cr23C6-type local atomic ordering. The local structure formation of Cr23C6-type nanophase was confirmed by nanobeam electron diffraction. A development process of dense precipitates of the Cr23C6-type nanophase was further studied by high-resolution electron microscopy. It was found that the formation of the highly-dense nanoprecipitates provides an increase in Vickers hardness.

2006 ◽  
Vol 17 (2) ◽  
pp. 227
Author(s):  
A. F. Moodie ◽  
J. C. H. Spence

John Cowley contributed significantly to all of the fields that relate to electron diffraction and electron microscopy, and helped to found not a few of them. His name is associated in particular with n-beam dynamical theory, high-resolution electron microscopy, scanning transmission electron microscopy, instrumental design, and the application of the techniques of electron scattering to structure analysis. His experimental work was not, however, confined to the scattering of electrons: to take but one instance, his seminal work on the theory of short-range order was stimulated initially by his experiments using X-rays, and it was only later that he extended the technique to include electron diffraction. Finally, to all those who practise the techniques of scattering electrons, X-rays, or neutrons in the study of solids, liquids or gases, his book Diffraction Physics remains not only eminently readable but authoritative.


Materials containing planar boundaries are of general interest and complete understanding of their structures is important. When direct imaging of the boundaries by, for instance, high-resolution electron microscopy, is impracticable, details of their structure and arrangement may be obtained from electron diffraction patterns. Such patterns are discussed in terms of those from intergrowth tungsten bronzes as specific examples. Fourier-transform calculations for proposed structures have been made to establish, in conjunction with optical-diffraction analogues, the features of the far-field diffraction patterns. These results have been compared with diffraction patterns obtained experimentally by transmission electron microscopy. The aim of the study, to show that the arrangement of the boundaries in these complicated phases can be deduced from their diffraction patterns without the need for high-resolution imaging, has been achieved. The steps to be taken to make these deductions are set out.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


2001 ◽  
Vol 16 (8) ◽  
pp. 2189-2191 ◽  
Author(s):  
Guo-Dong Zhan ◽  
Mamoru Mitomo ◽  
Young-Wook Kim ◽  
Rong-Jun Xie ◽  
Amiya K Mukherjee

Using a pure α–SiC starting powder and an oxynitride glass composition from the Y–Mg–Si–Al–O–N system as a sintering additive, a powder mixture was hot-pressed at 1850 °C for 1 h under a pressure of 20 MPa and further annealed at 2000 °C for 4 h in a nitrogen atmosphere of 0.1 MPa. High-resolution electron microscopy and x-ray diffraction studies confirmed that a small amount of β–SiC was observed in the liquid-phase-sintered α–SiC with this oxynitride glass, indicating stability of β–SiC even at high annealing temperature, due to the nitrogen-containing liquid phase.


1999 ◽  
Vol 571 ◽  
Author(s):  
N. D. Zakharov ◽  
P. Werner ◽  
V. M. Ustinov ◽  
A.R. Kovsh ◽  
G. E. Cirlin ◽  
...  

ABSTRACTQuantum dot structures containing 2 and 7 layers of small coherent InAs clusters embedded into a Si single crystal matrix were grown by MBE. The structure of these clusters was investigated by high resolution transmission electron microscopy. The crystallographic quality of the structure severely depends on the substrate temperature, growth sequence, and the geometrical parameters of the sample. The investigation demonstrates that Si can incorporate a limited volume of InAs in a form of small coherent clusters about 3 nm in diameter. If the deposited InAs layer exceeds a critical thickness, large dislocated InAs precipitates are formed during Si overgrowth accumulating the excess of InAs.


1980 ◽  
Vol 2 ◽  
Author(s):  
Fernando A. Ponce

ABSTRACTThe structure of the silicon-sapphire interface of CVD silicon on a (1102) sapphire substrate has been studied in crøss section by high resolution transmission electron microscopy. Multibeam images of the interface region have been obtained where both the silicon and sapphire lattices are directly resolved. The interface is observed to be planar and abrupt to the instrument resolution limit of 3 Å. No interfacial phase is evident. Defects are inhomogeneously distributed at the interface: relatively defect-free regions are observed in the silicon layer in addition to regions with high concentration of defects.


1997 ◽  
Vol 3 (S2) ◽  
pp. 673-674
Author(s):  
M. Rühle ◽  
T. Wagner ◽  
S. Bernath ◽  
J. Plitzko ◽  
C. Scheu ◽  
...  

Heterophase boundaries play an important role in advanced materials since those materials often comprise different components. The properties of the materials depend strongly on the properties of the interface between the components. Thus, it is important to investigate the stability of the microstructure with respect to annealing at elevated temperatures. In this paper results will be presented on the structure and composition of the interfaces between Cu and (α -Al2O3. The interfaces were processed either by growing a thin Cu overlayer on α- Al2O3 in a molecular beam epitaxy (MBE) system or by diffusion bonding bulk crystals of the two constituents in an UHV chamber. To improve the adhesion of Cu to α -Al2O3 ultrathin Ti interlayers were deposited between Cu and α - Al2O3.Interfaces were characterized by different transmission electron microscopy (TEM) techniques. Quantitative high-resolution electron microscopy (QHRTEM) allows the determination of the structure (coordinates of atoms) while analytical electron microscopy (AEM) allows the determination of the composition with high spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document