Hot Deformation Behavior and Microstructure of 6069 Aluminum Alloy

2014 ◽  
Vol 788 ◽  
pp. 201-207 ◽  
Author(s):  
Hui Zhong Li ◽  
Jun Jiang ◽  
Min Deng ◽  
Xiao Peng Liang ◽  
Jie Ouyang

The deformation behavior and microstructure of 6069 aluminum alloy have been studied by isothermal compression at temperature ranging from 300°C to 450°C on Gleeble-1500 machine at strain rates from 0.01 to 10s-1. The results show that the deformation temperature and strain rate is essential to the flow characteristic, and the main deformation mechanism for 6069 aluminum alloy is dynamic recovery at low strain rates. The dynamic recrystallization take place at the strain rates of 10s-1 and deformation temperature ranges of 300~350°C. At constant strain rate, the flow stress and steady-state flow stress decrease with deformation temperature increasing. While at constant temperature, the flow stress and steady-state flow stress increase with increasing strain rate. The processing map at the strain of 0.7 is obtained and the map exhibits two safe deformation domains (300~350°C at 1~10s-1 and 380~450°C at 0.01~0.3s-1).

2007 ◽  
Vol 546-549 ◽  
pp. 749-754 ◽  
Author(s):  
Hui Zhong Li ◽  
Xin Ming Zhang ◽  
Min Gan Chen ◽  
Ying Liu ◽  
Hui Gao

The deformation behavior of 2519 aluminum alloy was studied by isothermal compression by Gleeble-1500 simulator in the temperature range from 300 to 450°C under the strain rates of 0.01~10s-1. The results showed that the flow stress was controlled by strain rate and deformation temperature. The flow stress increased with strain rate and decreased with deformation temperature. The flow stress of 2519 aluminum alloy increased with strain and to the constant values at three strain rates of 0.01 s-1,0.1 s-1and1 s-1, indicating the dynamic recovery to occur. The flow stress decreased after a peak value with increase of strain at strain rate 10s-1 and deformation temperature higher than 350°C, showing partly dynamic recrystallization. The flow stress of 2519 aluminum alloy during high temperature deformation can be represented by Zener-Hollomon parameter.


2016 ◽  
Vol 684 ◽  
pp. 35-41 ◽  
Author(s):  
S.V. Rushchits ◽  
E.V. Aryshensky ◽  
S.M. Sosedkov ◽  
A.M. Akhmed'yanov

The deformation behavior of 1565ch alloy under the plane-strain conditions in the temperature range of 350–490 оС and strain rates range of 0,1–10 s-1 is studied. The expression for steady flow stress as the functions of temperature of deformation and strain rate is obtained. It is established that 1565ch alloy with zirconium addition shows higher strain resistance and less tendency to dynamic and static recrystallization than AMg6.


2011 ◽  
Vol 239-242 ◽  
pp. 2395-2398 ◽  
Author(s):  
Hui Zhong Li ◽  
Xiao Peng Liang ◽  
Min Song ◽  
Min Zeng

The flow behavior of a 7039 aluminum alloy and the corresponding microstructural evolution during hot deformation were studied by Gleeble-1500 thermal simulation tests, EBSD and TEM observations with temperatures ranging from 300 °C to 500 °C under strain rates from 0.01 s-1 to 10 s-1. It has been shown that the flow stress increases with the decrease in the deformation temperature and increase in the strain rate. The degree of dynamic recrystallization (DRX) increases with the increase in the deformation temperature and strain rate in 7039 aluminum alloy. The complete dynamic recrystallization occurs at 500 °C with a strain rate of 10 s-1.


2019 ◽  
Vol 25 (4) ◽  
pp. 369-375 ◽  
Author(s):  
Guiqing CHEN ◽  
Gaosheng FU ◽  
Tianyun WEI ◽  
Chaozeng CHENG ◽  
Huosheng WANG ◽  
...  

The 3003 aluminum alloy was deformed by isothermal compression in the range of deformation temperature 300 – 500 ℃ at strain rate 0.0l – 10.0 s-1 with Gleeble-1500 thermal simulator. A constitutive equation is established from the flow stress of the hot deformation. It is found that the average grain size of the 3003 aluminum alloy increases with the decrease of Zener-Hollomon (Z) value, and there is a linear correlation between them. The prediction model of the steady-state flow stress and the average grain size is established. The steady-state flow stress increases with the decrease of the average grain size. The microhardness of the 3003 aluminum alloy has a positive linear relationship with lnZ, and the relationship between the microhardness and the grain size meets the Hall-Petch equation, which can provide a reference for the microstructure control and rolling equipment selection of the 3003 aluminum alloy under hot deformation conditions.


2018 ◽  
Vol 913 ◽  
pp. 30-36
Author(s):  
Ran Liu ◽  
Hui Huang ◽  
Ya Liu ◽  
Li Rong

To study the hot deformation behavior of Al-Mg-Er alloy, hot compression tests were conducted on a Gleeble-1500D thermal simulator at the temperature range of 200-500°C with the strain rates from 0.001 to 10s-1. With the increase in the deformation temperature and the decrease in strain rates, the flow stress of the Al-Mg-Er alloy decreased. Processing maps were constructed to study on hot workability characteristics. The results showed that the flow stress curves exhibited the typical dynamic recrystallization characteristics and the stress decreased with the increase of deformation temperature and the decrease of strain rate. Moreover, the processing maps were established on the basis of dynamic material model and Prasad’s instability criterion.


Author(s):  
Adewale Olasumboye ◽  
Gbadebo Owolabi ◽  
Olufemi Koya ◽  
Horace Whitworth ◽  
Nadir Yilmaz

Abstract This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.


2014 ◽  
Vol 626 ◽  
pp. 50-56
Author(s):  
Woei Shyan Lee ◽  
Mao Hung Liu

The effect of directional grain structure and strain rate on the impact properties and dislocation substructure of 6061-T6 aluminum alloy is studied. Impact tests are performed at strain rates ranging from 1x103 to 5x103s-1 using a split Hopkinson pressure bar system. Cylindrical specimens are prepared from the rolled plates in longitudinal direction, transverse direction and through-thickness direction, respectively. The results show that the flow stress is strongly dependent on the strain rate and displays complex variations with grain structure direction. The flow stress increases with increasing strain rate. For all tested strain rates, the flow stress is the highest in the transverse specimen, followed by the through-thickness specimen and longitudinal specimen. However, at the strain rate of 5x103s-1, the flow stress in longitudinal specimen is higher than that in through-thickness specimen due to the change of dislocation multiplication rate. The plastic flow occurs within the deformation regions, and becomes more pronounced at high strain rates, especially for the longitudinal specimen. Dislocation density increases markedly with increasing strain rate. Strengthening effect is the highest in the transverse specimen, followed by the longitudinal specimen and through-thickness specimen.


2011 ◽  
Vol 314-316 ◽  
pp. 506-510
Author(s):  
Lei Xu ◽  
Guang Ze Dai ◽  
Xing Min Huang ◽  
Jun Wen Zhao ◽  
Jing Han

The rheological behavior of two kinds Al-Zn-Mg-Cu aluminum alloy with different extrusion ratio was studied by thermal compression in 300°C~450°C and in strain rate range of 0.01 s-1~10s-1 on Gleeble1500D simulator. The results show that: (1)the flow stress increases with deSuperscript textcreasing deformation temperature and increasing strain rate, and the initial microstructure influence the rheological behavior, the flow stress with fine grain is higher than that with coarse one except in strain rate 0.01s-1 and 0.1s-1 in 450°C owing to deformation easily with more grain boundary sliding in high temperature and low strain rate.(2)The flow stress of Al-Zn-Mg-Cu aluminum alloy during hot compression can be expressed as hyperbolic sine constitutive equation with Arrhenius parameter, the apparent steady state activation energy for hot compression with coarse grain is of 181.51kJ/mol, while that with fine grain is of 203.02kJ/mol.(3) The apparent steady state activation energy decreases with increasing temperature and strain rate, and the value of fine initial microstructure is higher than the low extrusion ratio rod commonly.


2012 ◽  
Vol 452-453 ◽  
pp. 61-65
Author(s):  
Xuan Xiao ◽  
Hui Xu ◽  
Li Yuan Sheng ◽  
Lan Zhang Zhou

Hot compression deformation behavior of Ti-6Al-2Zr-3Ni alloy was investigated through thermal simulation tests in the range of 900- 1050°C, with strain rate from 0.001 s-1 to 1 s-1. The results demonstrates that flow stress reaches the maximum quickily, followed by flow softening with the increase of strain in all true stress-strain curves. At a constant strain rate, flow stress will decrease with the test temperature. Moreover, the temperature sensitivity of flow stress reduces largely at temperature between 980 to 1050°C, during which dynamic recovery is the main mechanism for the hot deformed alloy. In addition, flow stress increases with the strain rate. At lower temperature, recrystallization reduces or vanishes at temperature ranging from 900 to 940 °C due to thermodynamics factors.


Sign in / Sign up

Export Citation Format

Share Document