scholarly journals Analysis of Different 100Cr6 Material States Using Particle-Oriented Peening

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1056 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Nicole Wielki ◽  
Daniel Meyer ◽  
Axel von Hehl

As part of a novel method for evolutionary material development, particle-oriented peening is used in this work to characterize 100Cr6 (AISI 52100) microparticles that were heat-treated by means of a differential scanning calorimeter (DSC). The plastic deformation of the samples in particle-oriented peening is correlated with the microstructural properties considering different heat-treatment variations. While the heating rate was kept constant (10 K/min) for all heat treatments, different heating temperatures (500 °C, 800 °C, 1000 °C and 1100 °C) were realized, held for 20 min and then cooled down at a rate of 50 K/min. Thereby, microstructural states with different (mechanical) properties are generated. For validation, microsections of the particles were analyzed and additional universal microhardness measurements (UMH) were performed. It could be shown that the quickly assessable plastic deformation descriptor reacts sensitively to the changes in the hardness due to the heat treatment.

2018 ◽  
Vol 275 ◽  
pp. 81-88
Author(s):  
Monika Karoń ◽  
Marcin Adamiak

The purpose of this paper is to present the microstructure and mechanical behavior of 6060 aluminum alloy after intense plastic deformation. Equal Channel Angular Pressing (ECAP) was used as a method of severe plastic deformation. Before ECAP part of the samples were heat treated to remove internal stresses in the commercially available aluminium alloy. The evolution of microstructure and tensile strength were tested after 1, 3, 6 and 9 ECAP passes in annealed and non annealed states. It was found that intensely plastically deformed refined grains were present in the tested samples and exhibited increased mechanical properties. Differences were noted between samples without and after heat treatment


2012 ◽  
Vol 57 (3) ◽  
pp. 877-881 ◽  
Author(s):  
K. Wawer ◽  
M. Lewandowska ◽  
K.J. Kurzydłowski

In the present study, severe plastic deformation (SPD) processing was combined with pre- and post processing heat treatment to investigate the possibility of synergic grain size and precipitation strengthening. Samples of 7475 alloy were solution heat treated and water quenched prior to hydrostatic extrusion (HE) which resulted in a grain refinement by 3 orders of magnitude, from 70 μm to about 70 nm. The extruded samples were subsequently aged at temperatures resulting in formation of nanoprecipitates.


2020 ◽  
Vol 993 ◽  
pp. 194-202
Author(s):  
Ying Ze Meng ◽  
Jian Min Yu ◽  
Zhi Min Zhang ◽  
Yao Jin Wu ◽  
Zheng Shi

Severe plastic deformation can be produced by repetitive upsetting-extrusion process. Using the repetitive upsetting-extrusion (RUE) process at decreasing temperature, the Mg-12.0Gd-4.5Y-2.0Zn-0.4Zr (wt %) alloy was deformed by different RUE passes and then heat treated. The microstructure, texture and mechanical properties of the alloy were compared and analyzed. The results demonstrate that with the increase of deformation passes, the coarse grains of the alloy decreased, the dynamic recrystallization fraction increased, and the dynamic recrystallized grains phagocytized the original grains. This can promote the continuous refinement of the grains and the microstructure uniformity. The maximum texture intensity of the (0001) basal plane decreased significantly with the increase of processing passes and the dispersion degree of pole figure increased. The orientation of dynamic recrystallized grains was randomly distributed to weaken texture. Due to the refinement of microstructure and the weakening of texture, the tensile strength and yield strength of the alloy obviously increased at room temperature. The mechanical properties of the alloy reached the highest after 3 passes and heat treatment.


2020 ◽  
Vol 22 (4) ◽  
pp. 909-918 ◽  
Author(s):  
M. M. Blaoui ◽  
M. Zemri ◽  
A. Brahami

AbstractEngineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. This paper presents a study of the influence of austenitization temperature, cooling rate, holding time and heating rate during the heat treatment on microstructure and mechanical properties (tensile strength, yield strength, elongation and hardness) of the C45 steel. Specimens undergoing different heat treatment lead to various mechanical properties which were determined using standard methods. Microstructural evolution was investigated by scanning electron microscopy (SEM). The results revealed that microstructure and hardenability of the C45 steel depends on cooling rate, austenitization temperature, holding time and heating rate.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4366
Author(s):  
Saqib Anwar ◽  
Ateekh Ur Rehman ◽  
Yusuf Usmani ◽  
Ali M. Al-Samhan

This study evaluated the microstructure, grain size, and mechanical properties of the alloy 800H rotary friction welds in as-welded and post-weld heat-treated conditions. The standards for the alloy 800H not only specify the composition and mechanical properties but also the minimum grain sizes. This is because these alloys are mostly used in creep resisting applications. The dynamic recrystallization of the highly strained and plasticized material during friction welding resulted in the fine grain structure (20 ± 2 µm) in the weld zone. However, a small increase in grain size was observed in the heat-affected zone of the weldment with a slight decrease in hardness compared to the base metal. Post-weld solution heat treatment (PWHT) of the friction weld joints increased the grain size (42 ± 4 µm) in the weld zone. Both as-welded and post-weld solution heat-treated friction weld joints failed in the heat-affected zone during the room temperature tensile testing and showed a lower yield strength and ultimate tensile strength than the base metal. A fracture analysis of the failed tensile samples revealed ductile fracture features. However, in high-temperature tensile testing, post-weld solution heat-treated joints exhibited superior elongation and strength compared to the as-welded joints due to the increase in the grain size of the weld metal. It was demonstrated in this study that the minimum grain size requirement of the alloy 800H friction weld joints could be successfully met by PWHT with improved strength and elongation, especially at high temperatures.


2010 ◽  
Vol 667-669 ◽  
pp. 925-930
Author(s):  
S.V. Krymskiy ◽  
Elena Avtokratova ◽  
M.V. Markushev ◽  
Maxim Yu. Murashkin ◽  
O.S. Sitdikov

The effects of severe plastic deformation (SPD) by isothermal rolling at the temperature of liquid nitrogen combined with prior- and post-SPD heat treatment, on microstructure and hardness of Al-4.4%Cu-1.4%Mg-0.7%Mn (D16) alloy were investigated. It was found no nanostructuring even after straining to 75%. Сryodeformation leads to microshear banding and processing the high-density dislocation substructures with a cell size of ~ 100-200 nm. Such a structure remains almost stable under 1 hr annealing up to 200oC and with further temperature increase initially transforms to bimodal with a small fraction of nanograins and then to uniform coarse grained one. It is found the change in the alloy post–SPD aging response leading to more active decomposition of the preliminary supersaturated aluminum solid solution, and to the alloy extra hardening under aging with shorter times and at lower temperatures compared to T6 temper.


2007 ◽  
Vol 550 ◽  
pp. 289-294
Author(s):  
Suk Hoon Kang ◽  
Jae Hyung Cho ◽  
Joon Sub Hwang ◽  
Jong Soo Cho ◽  
Yong Jin Park ◽  
...  

Cold drawn gold wires are widely applied in electronic packaging process to interconnect micro-electronic components. They basically provides a conducting path for electronic signal transfer, and experience thermo-mechanical loads in use. The mechanical stability of drawn gold wires is a matter of practical concern in the reliable functioning of electronic devices. It is known that mechanical properties of materials are deeply related to the microstructure. With appropriate control of deformation and heat processes, the mechanical properties of final products, such as tensile strength and elongation can be improved. Severe plastic deformation by torsion usually contributes to grain refinement and increment of strength. In this study, microstructure variations with torsion strain followed by drawing and heat treatment were investigated. Analyses by focused ion beam (FIB) and electron backscattered diffraction (EBSD) were carried out to characterize the effect of deformation and heat treatment on the drawn gold wires. Pattern quality of EBSD measurements was used as a quantitative measure for plastic deformation.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


2021 ◽  
Vol 63 (1) ◽  
pp. 73-78
Author(s):  
Pulkin Gupta ◽  
Sudha Kumari ◽  
Abhishek Gupta ◽  
Ankit Kumar Sinha ◽  
Prashant Jindal

Abstract Fused deposition modelling (FDM) is a layer-by-layer manufacturing process type of 3D-printing (3DP). Significant variation in the mechanical properties of 3D printed specimens is observed because of varied process parameters and interfacial bonding between consecutive layers. This study investigates the influence of heat treatment on the mechanical strength of FDM 3D printed Polylactic acid (PLA) parts with constant 3DP parameters and ambient conditions. To meet the objectives, 7 sets, each containing 5 dog-bone shaped samples, were fabricated from commercially available PLA filament. Each set was subjected to heat treatment at a particular temperature for 1 h and cooled in the furnace itself, while one set was left un-treated. The temperature for heat treatment (Th) varied from 30 °C to 130 °C with increments of 10 °C. The heat-treated samples were characterized under tensile loading of 400 N and mechanical properties like Young’s modulus (E), Strain % ( ε ) and Stiffness (k) were evaluated. On comparing the mechanical properties of heat-treated samples to un-treated samples, significant improvements were observed. Heat treatment also altered the geometries of the samples. Mechanical properties improved by 4.88 % to 10.26 % with the maximum being at Th of 110 °C and below recrystallization temperature (Tr) of 65 °C. Deformations also decreased significantly at higher temperatures above 100 °C, by a maximum of 36.06 %. The dimensions of samples showed a maximum decrease of 1.08 % in Tr range and a maximum decrease of 0.31 % in weight at the same temperature. This study aims to benefit the society by establishing suitable Th to recover the lost strength in PLA based FDM 3D printed parts.


2012 ◽  
Vol 271-272 ◽  
pp. 17-20
Author(s):  
Shu Yan Wu ◽  
Ze Sheng Ji ◽  
Chun Ying Tian ◽  
Ming Zhong Wu

This work is to study the influence of heat treatment on microstrudture and mechanical properties of AZ31B magnesium alloy prepared by solid -state recycling. AZ31B magnesium alloy chips were recycled by hot extruding. Three different heat treatments were conducted for recycled alloy. Mechanical properties and microstructure of the recycled specimen and heat treated specimen were investigated. 300°C×2h annealing specimen exhibits finer grain due to static recrystallization, and microstructure of 400°C×2h annealing specimen becomes more coarse. 300°C×2h annealing treatment improves obviously strength and ductility of recycled alloy. Ultimate tensile strength of alloy decreases and elongation to failure increases after 400°C×2h annealing. Grain size, dislocation density and bonding of chips have an effect on the elongation of recycled materials. 190°C×8h ageing has no influence on microstructure and mechanical properties of recycled alloy.


Sign in / Sign up

Export Citation Format

Share Document