Simulation, Fabrication and Characterization of 4H-SiC Floating Junction Schottky Barrier Diodes (Super-SBDs)

2007 ◽  
Vol 556-557 ◽  
pp. 881-884 ◽  
Author(s):  
Chiharu Ota ◽  
Johji Nishio ◽  
Tetsuo Hatakeyama ◽  
Takashi Shinohe ◽  
Kazutoshi Kojima ◽  
...  

The calculation for 4H-SiC floating junction Schottky barrier diodes (Super-SBDs) was carried out by device simulation and the optimized device structure was fabricated. The best characteristics of the Super-SBDs were breakdown voltage of 2700V and the specific on-resistance of 2.57m*cm2. The world record of Bariga’s Figure of Merit (BFOM) for SiC-SBD expressed by 4Vbd 2/Ron was improved to 11,354MW/cm2.

2002 ◽  
Vol 742 ◽  
Author(s):  
T. Kimoto ◽  
K. Hashimoto ◽  
K. Fujihira ◽  
K. Danno ◽  
S. Nakamura ◽  
...  

ABSTRACTHomoepitaxial growth, impurity doping, and diode fabrication on 4H-SiC(11–20) and (03–38) have been investigated. Although the efficiency of nitrogen incorporation is higher on the non-standard faces than on (0001), a low background doping concentration of 2∼3×1014 cm-3 can be achieved. On these faces, boron and aluminum are less effectively incorporated, compared to the growth on off-axis (0001). 4H-SiC(11–20) epilayers are micropipe-free, as expected. More interestingly, almost perfect micropipe closing has been realized in 4H-SiC (03–38) epitaxial growth. Ni/4H-SiC(11–20) and (03–38) Schottky barrier diodes showed promising characteritics of 3.36 kV-24 mΩcm2 and 3.28 kV–22 mΩcm2, respectively. The breakdown voltage of 4H-SiC(03–38) Schottky barrier diodes was significantly improved from 1 kV to above 2.5 kV by micropipe closing.


2009 ◽  
Vol 615-617 ◽  
pp. 963-966 ◽  
Author(s):  
Taku Horii ◽  
Tomihito Miyazaki ◽  
Yu Saito ◽  
Shin Hashimoto ◽  
Tatsuya Tanabe ◽  
...  

Gallium nitride (GaN) vertical Schottky barrier diodes (SBDs) with a SiNx field plate (FP) structure on low-dislocation-density GaN substrates have been designed and fabricated. We have successfully achieved the SBD breakdown voltage (Vb) of 680V with the FP structure, in contrast to that of 400V without the FP structure. There was no difference in the forward current-voltage characteristics with a specific on-resistance (Ron) of 1.1mcm2. The figure of merit V2b/Ron of the SBD with the FP structure was 420MWcm-2. The FP structure and the high quality drift layers grown on the GaN substrates with low dislocation densities have greatly contributed to the obtained results.


2020 ◽  
Vol 29 (4) ◽  
pp. 047305
Author(s):  
Wei-Fan Wang ◽  
Jian-Feng Wang ◽  
Yu-Min Zhang ◽  
Teng-Kun Li ◽  
Rui Xiong ◽  
...  

2006 ◽  
Vol 527-529 ◽  
pp. 1175-1178 ◽  
Author(s):  
Chiharu Ota ◽  
Johji Nishio ◽  
Tetsuo Hatakeyama ◽  
Takashi Shinohe ◽  
Kazutoshi Kojima ◽  
...  

4H-SiC floating junction Schottky barrier diodes (Super-SBDs) were fabricated. It was found that their properties are closest to the theoretical limitation, defined by the relationship between specific on-state resistance and breakdown voltage of 4H SiC-unipolar devices. They have a p-type floating layer designed as line-and-spacing. The specific on-state resistances of Super-SBDs with a few micrometers of spacing width were found to be nearly equal to those of conventional SBDs without p-type floating layer. The breakdown voltages of Super-SBDs were higher than those of conventional SBDs. Accordingly the properties of Super-SBDs have improved the trade-off between specific on-state resistance and breakdown voltage, and the highest value to date for Baliga’s Figure of Merit (BFOM) has been obtained.


2020 ◽  
Vol 7 (6) ◽  
pp. 065903
Author(s):  
Julie Bonkerud ◽  
Christian Zimmermann ◽  
Philip Michael Weiser ◽  
Thomas Aarholt ◽  
Espen Førdestrøm Verhoeven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document