Fabrication of the Bulk Amorphous Ni-W Alloy by an Electroforming Process

2007 ◽  
Vol 561-565 ◽  
pp. 1375-1378 ◽  
Author(s):  
Shin Wakayama ◽  
Yoshihisa Kimoto ◽  
Yorinobu Takigawa ◽  
Tokuteru Uesugi ◽  
Kenji Higashi

A 2mm-thick bulk amorphous Ni-W alloy is formed by applying a new electroforming process and its states are investigated by the XRD analyses and the EDS measurement. The homogeneities of the electroformed alloys are evaluated by the linear analyses on the cross sections of the sample. The fluctuation of the millimeter-scale W-concentration of the bulk amorphous alloy obtained in the present work is reduced to almost the same as that of the bulk nanocrystalline alloy reported in the previous work. Compared to the thin-film specimen produced by the conventional electroplating processes, the gradient of W-concentration of the bulk amorphous specimen can be reduced to two-fifth in the micrometer-scale profiles. Therefore new electroforming process can be successfully applied to the fabrication of the bulk amorphous Ni-W alloy.

2007 ◽  
Vol 26-28 ◽  
pp. 691-694 ◽  
Author(s):  
Akari Fujii ◽  
Yoshihisa Kimoto ◽  
Shin Wakayama ◽  
Yorinobu Takigawa ◽  
Tokuteru Uesugi ◽  
...  

Many studies have been conducted on mechanical properties in nanocrystalline Ni-W alloys. However, since these results are obtained in the specimens whose thickness is less than 100 μm and whose homogeneity is not strictly controlled, an inherent potential of the nanocrystalline Ni-W alloy may be hidden. Therefore, it is necessary to fabricate the bulk Ni-W alloy with sufficient thickness and homogeneity. In the present study, we develop novel electroforming process and fabricate the homogeneous nanocrystalline Ni-W alloys. The homogeneities of W-concentration in micrometer scale are confirmed by the W-concentration profiles obtained by the linear analyses of the energy dispersed spectroscopy (EDS). The single-phase nanocrystalline bulk Ni-W alloy with the thickness above 2 mm and minimized W-concentration gradient and fluctuation is featured for the first time.


1996 ◽  
Vol 79 (8) ◽  
pp. 5895 ◽  
Author(s):  
Francis H. Liu ◽  
Hua-Ching Tong ◽  
Lena Milosvlasky

Author(s):  
D. M. Davies ◽  
R. Kemner ◽  
E. F. Fullam

All serious electron microscopists at one time or another have been concerned with the cleanliness and freedom from artifacts of thin film specimen support substrates. This is particularly important where there are relatively few particles of a sample to be found for study, as in the case of micrometeorite collections. For the deposition of such celestial garbage through the use of balloons, rockets, and aircraft, the thin film substrates must have not only all the attributes necessary for use in the electron microscope, but also be able to withstand rather wide temperature variations at high altitude, vibration and shock inherent in the collection vehicle's operation and occasionally an unscheduled violent landing.Nitrocellulose has been selected as a film forming material that meets these requirements yet lends itself to a relatively simple clean-up procedure to remove particulate contaminants. A 1% nitrocellulose solution is prepared by dissolving “Parlodion” in redistilled amyl acetate from which all moisture has been removed.


1971 ◽  
Vol 32 (1) ◽  
pp. 7-9 ◽  
Author(s):  
J. Galin ◽  
D. Guerreau ◽  
M. Lefort ◽  
X. Tarrago

The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Author(s):  
Georges Griso ◽  
Larysa Khilkova ◽  
Julia Orlik ◽  
Olena Sivak

AbstractIn this paper, we study the asymptotic behavior of an $\varepsilon $ ε -periodic 3D stable structure made of beams of circular cross-section of radius $r$ r when the periodicity parameter $\varepsilon $ ε and the ratio ${r/\varepsilon }$ r / ε simultaneously tend to 0. The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities. We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order PDE.


2009 ◽  
Vol 24 (02n03) ◽  
pp. 450-453
Author(s):  
◽  
T. SKORODKO ◽  
M. BASHKANOV ◽  
D. BOGOSLOWSKY ◽  
H. CALÉN ◽  
...  

The two-pion production in pp-collisions has been investigated in exclusive measurements from threshold up to Tp = 1.36 GeV . Total and differential cross sections have been obtained for the channels pnπ+π0, ppπ+π-, ppπ0π0 and also nnπ+π+. For intermediate incident energies Tp > 1 GeV , i.e. in the region, which is beyond the Roper excitation but at the onset of ΔΔ excitation the total ppπ0π0 cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the nnπ+π+ cross section is a factor of five larger than predicted. A model-unconstrained isospin decompostion of the cross section points to a significant contribution of an isospin 3/2 resonance other than the Δ(1232). As a possible candidate the Δ(1600) is discussed.


Sign in / Sign up

Export Citation Format

Share Document