scholarly journals Influence of Surface Finishing and Binder Phase on Friction and Wear of WC Based Hardmetals

2007 ◽  
Vol 561-565 ◽  
pp. 2403-2406 ◽  
Author(s):  
Koenraad Bonny ◽  
Patrick de Baets ◽  
Omer Van der Biest ◽  
Jef Vleugels ◽  
Bert Lauwers

At present, cobalt is the most commonly used binder material in tungsten carbide based hardmetals. Current research on sliding wear performance of these cemented carbides, however, reveals promising results for nickel binder as well. Test samples of WC-Co and WC-Ni hardmetals have been machined and surface finished by wire-EDM and grinding. From comparative dry sliding pin-on-plate experiments on wire-EDM’ed, ground and polished grades, correlations are derived between wear volume loss and friction on the one hand and contact pressure, sliding distance, binder phase and microstructure on the other hand. The lowest wear levels are encountered with polished cemented carbides. The EDM induced surface modification turns out to deteriorate wear resistance, especially during the running-in stage of sliding. These findings are in agreement with Xray diffraction measurements of the residual stress level in the WC phase.

Author(s):  
K. Bonny ◽  
P. De Baets ◽  
Y. Perez ◽  
S. Van Autre`ve ◽  
J. Van Wittenberghe ◽  
...  

From comparative dry sliding pin-on-plate experiments on distinctive WC-Co and WC-Ni cemented carbides, machined by grinding or wire-EDM, correlations are derived between wear rate, wear volume and coefficient of friction and contact load, sliding distance, microstructure and surface finish condition. The EDM induced surface modification turns out to deteriorate wear resistance, especially during the wear-in stage of sliding. These findings are in agreement with X-ray diffraction measurements of the residual stress level in the WC phase.


2007 ◽  
Vol 561-565 ◽  
pp. 2025-2028 ◽  
Author(s):  
Koenraad Bonny ◽  
Patrick de Baets ◽  
Omer Van der Biest ◽  
Jef Vleugels ◽  
Bert Lauwers

Tungsten carbide based hardmetals with cobalt binder phase are widely used in engineering industries for their excellent mechanical properties and outstanding wear performance. Reciprocative sliding wear behaviour of a number of WC-Co based hardmetal grades was investigated using a small-scale pin-on-plate tribometer. Test samples were manufactured by electro-discharge machining (EDM) with various surface finishing regimes. SEM topographies and cross-section views of the cemented carbides were obtained both before and after dry friction tests, revealing distinctive wear mechanisms. The generated wear loss was quantified topographically using surface scanning equipment. Wear debris particles were collected and examined by EDX and TEM analysis. Based on experimental results, the execution of consecutive gradually finer EDM cutting steps was found to considerably enhance wear performance. Furthermore, a significant influence of contact load, sliding movement duration, application of lubricant and wear debris formation on wear rate and friction was established.


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3873-3881 ◽  
Author(s):  
M.T. Hernández-Sierra ◽  
R. Ortega-Álvarez ◽  
M.G. Bravo-Sánchez ◽  
L.D. Aguilera-Camacho ◽  
J.S. García-Miranda ◽  
...  

ABSTRACTAISI 4140 steel is a popular low alloy steel due to its wide applications as workpiece in the metal-mechanic industry; there are extensive research about surface modification to enhance its properties for specific applications. The focus of this study was to investigate the influence of the nature of lubricants, mineral and vegetable oils, on the tribological performance of the hardened and tempered AISI 4140 steel against alumina (Al2O3). For this purpose, friction tests were conducted in a pin on disc tribometer according to ASTM standard G 99-05, at room temperature of 25 °C and in air with about 30% relative humidity. Lubricants were selected to be commercial Holifa B22/2 oil as mineral oil and Castor Oil as bio-lubricant, with kinematic viscosity at 25 °C of 667 and 662 cSt respectively. The following conditions were settled for all the experiments: relative sliding speed of 0.05 ms-1, sliding distance of 1000 m and wear track radius of 2 mm. Friction behaviour was reported as the average kinetic friction coefficient (µK) while wear performance was evaluated as wear rate (K). In order to identify and determine wear mechanisms, worn surfaces were analyzed by optical microscopy and profilometry. It was found that, for these tribosystems, hardened and tempered AISI 4140 steel had the best friction and wear performance under lubrication with Castor Oil. The lowest µK achieved was 0.035, whereas the lowest K was 1.02x10-8 mm3/Nm. With this bio-lubricant, there were reductions in friction and wear up to 72% compared with those under mineral oil lubrication.


Tribologia ◽  
2017 ◽  
Vol 272 (2) ◽  
pp. 25-31
Author(s):  
Andrzej DZIERWA

Wear tests were conducted using a ball-on-disc tester T-11. In the experiment, a 42CrMo4 rotating steel disc with a hardness of 40±2 HRC was placed in contact with a 100Cr6 steel ball with a diameter of 6.35 [mm]. The hardness of the ball was set to 62±2 HRC. Finishing treatment applied to the surfaces was sand blasting. Disc samples were prepared to obtain surfaces in similar range of the Sa parameter (arithmetical mean height of the surface) but other surface topography parameters vary. Dry sliding tests were conducted at sliding speeds of v1 = 0.16; v2 = 0.24 i v3 = 0.32 [m/s]. The sliding distance was set to 282.6 [m], and the normal load was set to 9.81 [N]. During the tests, the friction force was monitored as a function of time. Disc and ball wear was measured after the tests using a white light interferometer Talysurf CCI Lite. Profiles were taken in four positions (900 apart) perpendicular to the wear track. Then, using an interferometer software program TalyMap Gold 6.0, they were computed and averaged. It was found that the initial surface topography has a significant influence on friction and wear levels under dry sliding conditions. It was also identified the correlation between several surface topography parameters and wear volume.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Haishun Deng ◽  
Shiju He ◽  
Feiyu Mao ◽  
Chuanli Wang

In order to improve the friction and wear performance of textured port plate pair, effects of the micropit depth on the tribology performance is studied in the paper. The relation between the micropit depth and the port plate pair’s oil loading carrying capacity is analyzed in theory; with the friction coefficient, the wear volume and the surface roughness as the evaluation criteria, effects of the micropits’ depth on the tribology performance are investigated. The conclusions are shown as follows: oil loading capacity would come to its peak when the oil film thickness is equal to the micropit depth; the optimal micropit depth is unrelated to the area ratios and micropits’ diameters. With the same parameters, the effects of antifriction is optimal when the micropits’ depth is 10 μm, while antiwear and surface integrity are optimal when 15 μm. When the micropits’ depth is 5 μm, the antiwear, surface roughness, and antifriction are worse compared with those of the untextured port plate pair.


2007 ◽  
pp. 2403-2406
Author(s):  
Koenraad Bonny ◽  
Patrick De Baets ◽  
Omer van der Biest ◽  
Jozef Vleugels ◽  
Bert Lauwers

2020 ◽  
Vol 62 (12) ◽  
pp. 1205-1214
Author(s):  
Lu-cheng Cai ◽  
Xiao-song Jiang ◽  
Yu-cheng Guo ◽  
Da-ming Sun ◽  
Xing-long Wang ◽  
...  

2021 ◽  
Vol 157 ◽  
pp. 106891
Author(s):  
Hongwei Ruan ◽  
Yaoming Zhang ◽  
Song Li ◽  
Lijun Yang ◽  
Chao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document