Synthesis and Characterization of Titania Nanoribbons for Lithium Selective Adsorption

2009 ◽  
Vol 610-613 ◽  
pp. 14-20
Author(s):  
Qin Hui Zhang ◽  
Shao Peng Li ◽  
Shu Ying Sun ◽  
Xian Sheng Yin ◽  
Jian Guo Yu

Mesoporous titania nanoribbons are synthesized via an optimized soft hydrothermal process and the derived titania ion-sieves with lithium selective adsorption property are accordingly prepared via a simple solid-phase reaction between Li2CO3 and TiO2 nanomaterials followed by the acid treatment process to extract lithium from the Li2TiO3 ternary oxide precursors. The physical chemistry structure are characterized by XRD, TEM/HRTEM, SAED and N2 adsorption-desorption analysis; and the lithium selective adsorption properties are tested by the adsorption isotherm measurement and demonstrated with the distribution coefficient of a series of alkaline and alkaline-earth metal ions. Though the high temperature calcinations and lithium insertion-extraction process resulted in the agglomeration of nanostructure to large bulky particles, it implied that that the low-dimensional titania nanoribbons might be functionalized to lithium ion-sieves with remarkable adsorption capacity and selectivity, promising in the utilization of lithium extraction from aqueous resources including brine or seawater.

2021 ◽  
pp. 2150014
Author(s):  
Do Viet On ◽  
Le Dai Vuong ◽  
Truong Van Chuong ◽  
Dao Anh Quang ◽  
Ho Van Tuyen ◽  
...  

BaTiO3 nanoparticles were synthesized by hydrothermal method using amorphous phase TiO2 precursor as the Ti-source. The microstructure and phase structure were determined using XRD, SEM and Raman spectroscopy analysis results. The results showed that BaTiO3 nanoparticles have tetragonal structure, average size of about 100 nm was obtained at Ba/Ti ratio of 1.5, synthesis temperature of 200[Formula: see text]C and reaction time of 12 h. The components of the BaTiO3 lead-free ceramic system are fabricated by conventional solid-phase reaction from the average size BaTiO3 particles about 100 nm obtained by hydrothermal process. The effects of sintering behavior on dielectric, ferroelectric and piezoelectric properties of BT high-density ceramic were studied. The BaTiO3 ceramic composition sintered at 1300[Formula: see text]C has a relative density of 97%, the value of the electromechanical coefficient [Formula: see text] = 0.40, [Formula: see text] = 0.42, the large piezoelectric coefficient [Formula: see text] = 300 pC/N, [Formula: see text]125 pC/N.


2019 ◽  
Vol 960 ◽  
pp. 238-243
Author(s):  
Ming Wang ◽  
Xue Ming Zhang ◽  
Ying Bo Wang ◽  
Li Li Cheng ◽  
Xue Lei Wang ◽  
...  

Spinel Li4Ti5O12 (LTO) doped with Mg2+ was synthesized by solid-phase reaction method. The Mg2+ doping quantity was 3%, 6%, 9%, and 12%, respectively. The structure and electrochemical performance of the prepared LTO composites were investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and galvanostatic charge-discharge tests. It was found that the doped Mg ion did not change the structure of Li4Ti5O12, and it was evenly distributed around Li4Ti5O12. When Mg2+ doping quantity increased from 3% to 12%, the internal resistance and charge transfer resistance of the composite both decreased. The first discharge specific capacity of 6%-Mg2+ doped LTO composite was 168 mAh/g, which was close to the theoretical capacity of pure lithium titanate (175 mAh/g), and the capacity retention rate was 98% after 100 cycles.


2009 ◽  
Vol 24 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Bing Yan ◽  
Jianhua Wu

NaGd(MoO4)2:Ln3+ (Ln = Eu, Tb) submicrometer phosphors have been synthesized by a composite method including the solid state reaction process at room temperature and the hydrothermal process. It is revealed that temperature and humidity have an influence on the reaction rate and that higher temperature and humidity can speed up the reaction process. Crystalline water is necessary for the solid phase reaction at room temperature. The x-ray diffraction (XRD) patterns indicate that NaGd(MoO4)2:Ln3+ (Ln = Eu, Tb) submicrometer phosphors crystallize well with the scheelite structure. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrate that the average grain size of NaGd(MoO4)2:Ln3+ is about 225 nm without conglomeration. The luminescent lifetime and quantum efficiency for NaGd(MoO4)2:Eu3+ are determined.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Oleg V. Andreev ◽  
Victor V. Atuchin ◽  
Alexander S. Aleksandrovsky ◽  
Yuriy G. Denisenko ◽  
Boris A. Zakharov ◽  
...  

EuLnCuSe3 (Ln = Nd, Sm, Gd, Er), due to their complex composition, should be considered new materials with the ability to purposefully change the properties. Samples of the EuLnCuSe3 were prepared using Cu, rare earth metal, Se (99.99%) by the ampoule method. The samples were obtained by the crystallization from a melt and annealed at temperatures 1073 and 1273 K. The EuErCuSe3 crystal structure was established using the single-crystal particle. EuErCuSe3 crystallizes in the orthorhombic system, space group Cmcm, KCuZrS3 structure type, with cell parameters a = 4.0555 (3), b = 13.3570 (9), and c = 10.4602 (7) Å, V = 566.62 (6) Å3. In structure EuErCuSe3, erbium ions are coordinated by selenium ions in the octahedral polyhedron, copper ions are in the tetrahedral coordination, europium ions are between copper and erbium polyhedra layers and are coordinated by selenium ions as two-cap trigonal prisms. The optical band gap is 1.79 eV. At 4.7 K, a transition from the ferrimagnetic state to the paramagnetic state was detected in EuErCuSe3. At 85 and 293 K, the compound is in a paramagnetic state. According to XRPD data, EuLnCuSe3 (Ln = Nd, Sm, Gd) compounds have a Pnma orthorhombic space group of the Eu2CuS3 structure type. For EuSmCuSe3, a = 10.75704 (15) Å, b = 4.11120 (5) Å, c = 13.37778 (22) Å. In the series of EuLnCuSe3 compounds, the optical band gap increases 1.58 eV (Nd), 1.58 eV (Sm), 1.72 eV (Gd), 1.79 eV (Er), the microhardness of the 205 (Nd), 210 (Sm), 225 (Gd) 235 ± 4 HV (Er) phases increases, and the thermal stability of the phases increases significantly. According to the measurement data of differential scanning calorimetry, the EuNdCuSe3 decomposes, according to the solid-phase reaction T = 1296 K, ΔH = 8.2 ± 0.8 kJ/mol. EuSmCuSe3 melts incongruently T = 1449 K, ΔH = 18.8 ± 1.9 kJ/mol. For the EuGdCuSe3, two (Tα↔β = 1494 K, ΔHα↔β = 14.8 kJ/mol, Tβ↔γ = 1530 K, ΔHβ↔γ = 4.8 kJ/mol) and for EuErCuSe3 three polymorphic transitions (Tα↔β = 1561 K, ΔHα↔β = 30.3 kJ/mol, Tβ↔γ = 1579 K, ΔHβ↔γ = 4.4 kJ/mol, and Tγ↔δ = 1600 K, ΔHγ↔δ = 10.1 kJ/mol). The compounds melt incongruently at the temperature of 1588 K, ΔHmelt = 17.9 ± 1.8 kJ/mol and 1664 K, ΔHmelt = 25.6 ± 2.5 kJ/mol, respectively. Incongruent melting of the phases proceeds with the formation of a solid solution of EuSe and a liquid phase.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Hengli Xiang ◽  
Genkuan Ren ◽  
Yanjun Zhong ◽  
Dehua Xu ◽  
Zhiye Zhang ◽  
...  

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.


2016 ◽  
Vol 697 ◽  
pp. 510-514 ◽  
Author(s):  
Feng Rui Zhai ◽  
Ke Shan ◽  
Ruo Meng Xu ◽  
Min Lu ◽  
Zhong Zhou Yi ◽  
...  

In the present paper, the ZrB2/h-BN multiphase ceramics were fabricated by SPS (spark plasma sintering) technology at lower sintering temperature using h-BN, ZrO2, AlN and Si as raw materials and B2O3 as a sintering aid. The phase constitution and microstructure of specimens were analyzed by XRD and SEM. Moreover, the effects of different sintering pressures on the densification, microstructure and mechanical properties of ZrB2/h-BN multiphase ceramics were also systematically investigated. The results show that the ZrB2 was obtained through solid phase reaction at different sintering pressures, and increasing sintering pressure could accelerate the formation of ZrB2 phase. As the sintering pressure increasing, the fracture strength and toughness of the sintered samples had a similar increasing tendency as the relative density. The better comprehensive properties were obtained at given sintering pressure of 50MPa, and the relative density, fracture strength and toughness reached about 93.4%, 321MPa and 3.3MPa·m1/2, respectively. The SEM analysis shows that the h-BN grains were fine and uniform, and the effect of sintering pressure on grain size was inconspicuous. The distribution of grain is random cross array, and the fracture texture was more obvious with the increase of sintering pressure. The fracture mode of sintered samples remained intergranular fracture mechanism as sintering pressure changed, and the grain refinement, grain pullout and crack deflection helped to increase the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document