Experimental Research on Surface Roughness in High Speed Milling of Complex Surface Mold Steel

2009 ◽  
Vol 626-627 ◽  
pp. 123-128 ◽  
Author(s):  
Cao Qing Yan ◽  
Jun Zhao ◽  
Yue En Li ◽  
Shi Guo Han

Complex surface mold has been widely used in various industries, and high efficiency and high quality can been achieved through high-speed CNC milling processing. Surface roughness including transverse and longitudinal roughness is an important criterion for mold quality. A high-speed milling experiment was performed in mold steel P20 using cemented carbide ball-end mill to investigate the surface roughness. The effects of process parameters on roughness including spindle speed, feed per tooth and radial cutting depth were examined, and an analysis on the mechanism for two kinds of roughness of different tool paths was finished. The experimental results show that the longitudinal roughness improve obviously while the spindle speed and the feed per tooth increase on the high-speed conditions, and the transverse roughness increase significantly when the radial cutting depth increases. And for a smaller roughness value, the tool path should be selected along the direction in which the curvature changes evidently.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1526
Author(s):  
Cheng-Hsien Kuo ◽  
Zi-Yi Lin

Most aerospace parts are thin walled and made of aluminum or titanium alloy that is machined to the required shape and dimensions. Deformation is a common issue. Although the reduced cutting forces used in high-speed milling generate low residual stress, the problem of deformation cannot be completely resolved. In this work, we emphasized that choosing the correct cutting parameters and machining techniques could increase the cutting performance and surface quality and reduce the deformation of thin plates. In this study, a part made of a thin 6061 aluminum alloy plate was machined by high-speed milling (HSM), and a Taguchi L16 orthogonal array was used to optimize the following parameters: linear velocity, feed per tooth, cutting depth, cutting width, and toolpath. The impact of cutting parameters on the degree of deformation, surface roughness, as well as the cutting force on the thin plate were all investigated. The results showed that the experimental parameters for the optimal degree of deformation were A1 (linear velocity 450 mm/min), B1 (feed per tooth 0.06 mm/tooth), C1 (cutting depth 0.3 mm), D4 (cutting width 70%), and E4 (rough zigzag). Feed per tooth was the most significant control factor, with a contribution as high as 63.5%. It should also be mentioned that, according to the factor response of deformation, there was a lower value of feed per tooth and less deformation. Furthermore, the feed per tooth and the cutting depth decreased and the surface roughness increased. The cutting force rose or fell with an increase or decrease of cutting depth.


2011 ◽  
Vol 314-316 ◽  
pp. 1734-1739
Author(s):  
Kai Zhu Li ◽  
Shi Xiong Wu

In order to decrease the radial amout of cutting depth in high speed milling,optimized arc transition has been proposed in corner milling and the circular trochoid model has been used to remove the residual. Mathematical relationship based on radial depth of cutting constrain among tool radius, trochoid radius and tool step length in circular trochoid model have been analyzed .Based on the goal to limiting the radial cutting depth, appropriate parameters have been computed for higher machining quality. To verify the effectiveness of the proposed method, a compared test has been conducted. Experiment shows that optimized tool paths cause a slight increase in machining time but obtain weaker processing vibration and superior machining precision.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5733-5745
Author(s):  
Weihua Wei ◽  
Rui Cong ◽  
Tongming Xue ◽  
Ayodele Daniel Abraham ◽  
Changyong Yang

Wood-plastic composites have attracted extensive attention throughout the world because of their advantages. However, the manufacturing mechanism of the wood-plastic composites, i.e., high-speed milling technology, is not perfect and needs further study. The effects of the cutting parameters, i.e., the spindle speed, feed rate, axial milling depth, and radial milling depth, on the surface roughness and chip morphology were studied; the surface roughness values, Ra and Rz of high-speed milling wood-plastic composites samples were measured via high precision surface roughness measuring instrument, and their regression equations were calculated. The chips produced via a high-speed milling process were collected and studied. The results showed that the surface roughness of the wood-plastic composites increases with an increase in the axial depth, feed rate, or radial depth, but decreases with an increase in the spindle speed. In addition, the axial milling depth, feed rate, and spindle speed had a significant effect on the morphology of the chips. However, the effect of the radial milling depth on the morphology of the chips was not obvious. The results can provide a scientific basis for the optimization of high-speed milling processing of wood-plastic composites.


2013 ◽  
Vol 395-396 ◽  
pp. 1026-1030 ◽  
Author(s):  
Zhao Lin Zhong ◽  
Xing Ai ◽  
Zhan Qiang Liu

This paper presents the experimental results of cutting force and surface roughness of 7050-T7451 aluminum alloy under the cutting speed of 3000~5000m/min. The cutting forces and surface roughness with different cutting parameters were analyzed. Experimental results suggested that increasing cutting speed would engender thermal softening, which would in return affect the cutting force and surface roughness in high speed milling. The cutting force and surface roughness were affected by cutting depth and feed rate obviously. Surface roughness was also affected by cutting width which changed the cutting force slightly. According to the results, proper parameters could be selected and thermodynamic relationship needed to be discussed for further research.


2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


Author(s):  
Hongji Zhang ◽  
Yuanyuan Ge ◽  
Hong Tang ◽  
Yaoyao Shi ◽  
Zengsheng Li

Within the scope of high speed milling process parameters, analyzed and discussed the effects of spindle speed, feed rate, milling depth and milling width on milling forces in the process of high speed milling of AM50A magnesium alloy. At the same time, the influence of milling parameters on the surface roughness of AM50A magnesium alloy has been revealed by means of the measurement of surface roughness and surface micro topography. High speed milling experiments of AM50A magnesium alloy were carried out by factorial design. Form the analysis of experimental results, The milling parameters, which have significant influence on milling force in high speed milling of AM50A magnesium alloy, are milling depth, milling width and feed speed, and the nonlinear characteristics of milling force and milling parameters. The milling force decreases with the increase of spindle in the given mill parameters. For the effects of milling parameters on surface quality of the performance, in the milling depth and feeding speed under certain conditions with the spindle speed increases the surface quality of AM50A magnesium alloy becomes better with the feed speed increases the surface quality becomes poor. When the spindle speed is greater than 12000r/min, the milling depth is less than 0.2mm, and the feed speed is less than 400mm/min, the milling surface quality can be obtained easily.


Sign in / Sign up

Export Citation Format

Share Document