Anisotropic Ostwald Ripening in Silicon Nitride: On the Reaction-Controlled Kinetics

2010 ◽  
Vol 638-642 ◽  
pp. 2598-2603
Author(s):  
M. Kitayama

A model for anisotropic Ostwald ripening was developed using a chemical potential (weighted mean curvature) difference as a driving force for mass-transport. Based on this model, grain growth simulations of silicon nitride during the phase transformation and Ostwald ripening were performed. Comparison with experimental results during the phase transformation suggests that grain growth be controlled by interfacial reaction. Simulations of Ostwald ripening predict that the growth exponent be 3 for the reaction-controlled case, and increases up to 5 as the growth kinetics shifts from reaction-controlled to diffusion-controlled. It was reported that the mean aspect ratio of silicon nitride crystals increased during the phase transformation, and decreased during Ostwald ripening. These behaviors were successfully simulated by this model. The concave depression at the tip of silicon nitride crystal that was experimentally observed. Simulations by the Ostwald ripening model demonstrated that it could be developed when the liquid phase was super-saturated, and further that the tip shape was a function of the liquid concentration.

1997 ◽  
Vol 105 (1222) ◽  
pp. 476-478 ◽  
Author(s):  
Yusuke OKAMOTO ◽  
Naoto HIROSAKI ◽  
Yoshio AKIMUNE ◽  
Mamoru MITOMO

2010 ◽  
Vol 25 (12) ◽  
pp. 2354-2361 ◽  
Author(s):  
Mathias Herrmann ◽  
Zhijian Shen ◽  
Ingrid Schulz ◽  
Jianfeng Hu ◽  
Bostjan Jancar

The densification behaviors of two silicon nitride nanopowder mixtures based respectively on α-Si3N4 and β-Si3N4 as the major phase constituent were studied by spark plasma sintering. Sintering conditions were established where a low viscous liquid not in equilibrium with the main crystalline constituent(s) stimulated the grain sliding yet did not activate the reprecipitation mechanism that unavoidably yields grain growth. By this way of dynamic grain sliding full densification of silicon nitride nanoceramics was achieved with no noticeable involvement of α- to β-Si3N4 phase transformation and grain growth. This processing principle opens the way toward flexible and precise tailoring of the microstructures and properties of Si3N4 ceramics. The obtained silicon nitride nanoceramics showed improved wear resistance, particularly under higher Hertzian stresses.


1995 ◽  
Vol 103 (1197) ◽  
pp. 464-469 ◽  
Author(s):  
Hideki HIROTSURU ◽  
Mamoru MITOMO ◽  
Toshiyuki NISHIMURA

MRS Bulletin ◽  
1995 ◽  
Vol 20 (2) ◽  
pp. 38-41 ◽  
Author(s):  
Mamoru Mitomo ◽  
Naoto Hirosaki ◽  
Hideki Hirotsuru

The improvement of mechanical properties by microstructural control has been one of the main topics of interest in the development of silicon nitride ceramics. Toughening, by developing an in situ composite or self-reinforced microstructure, has attracted particular attention.Microstructural design is a key factor in the optimization of processing parameters. The microstructures of sintered materials are composed of silicon nitride grains and grain boundaries, which can be either crystalline, amorphous, or partially crystalline, depending on the composition, amount of sintering additives, and processing parameters. Silicon nitride ceramics have been fabricated with an addition of metal oxides and rare-earth oxides that form a liquid phase during sintering and accelerate grain boundary diffusion. The effect of composition of the glassy phase on the mechanical properties of ceramics is presented by Becher et al. and Hoffmann elsewhere in this issue. This article focuses specifically on the design and control of grain size.As it is well recognized, many processing parameters affect grain growth behavior and the resulting microstructure. During sintering, the α- to β-phase transformation leads to a self-reinforcing microstructure on account of the anisotropic grain growth of the stable hexagonal β- Si3N4 phase. Therefore, α-rich powders are widely used for starting materials. Phase transformation accelerates anisotropic grain growth, resulting in an increase in the fracture toughness of Si3N4 ceramics. Kang and Han discuss the effect of phase transformation on nucleation and grain growth in an article in this issue. The effect of the grain-size distribution on microstructural development is described in this article, based on studies conducted mostly with β-Si3N4 powders.


1998 ◽  
Vol 536 ◽  
Author(s):  
E. M. Wong ◽  
J. E. Bonevich ◽  
P. C. Searson

AbstractColloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. We show that the growth kinetics of the ZnO particles follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films were fabricated by constant current electrophoretic deposition (EPD) of the ZnO quantum particles from these colloidal suspensions. All the films exhibited a blue shift relative to the characteristic green emission associated with bulk ZnO. The optical characteristics of the particles in the colloidal suspensions were found to translate to the films.


2013 ◽  
Vol 747-748 ◽  
pp. 844-849 ◽  
Author(s):  
Yue Fei ◽  
Xin Nan Wang ◽  
Zhi Shou Zhu ◽  
Jun Li ◽  
Guo Qiang Shang ◽  
...  

Ti-Mo-Nb-Cr-Al-Fe-Si alloy is a new metastable β titanium alloy with excellent combination of strength and ductility. The β grain-growth exponent and the activation energies for β grain growth for the investigated alloy at specified temperature were computed by the kinetic equations and the Arrhenius-type equation. The rate of β grain growth decreases with elongating solution treated time and increases with the increasing solution-treated temperature. The β grain-growth exponents, n, are 0.461, 0.464 and 0.469 at 1113, 1133 and 1153K, respectively. The β grain growth activation energy is determined to be 274 KJ/mol.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2525
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

In the field of air navigation, there is a constant pursuit for new navigation solutions for precise GNSS (Global Navigation Satellite System) positioning of aircraft. This study aims to present the results of research on the development of a new method for improving the performance of PPP (Precise Point Positioning) positioning in the GPS (Global Positioning System) and GLONASS (Globalnaja Nawigacionnaja Sputnikovaya Sistema) systems for air navigation. The research method is based on a linear combination of individual position solutions from the GPS and GLONASS systems. The paper shows a computational scheme based on the linear combination for geocentric XYZ coordinates of an aircraft. The algorithm of the new research method uses the weighted mean method to determine the resultant aircraft position. The research method was tested on GPS and GLONASS kinematic data from an airborne experiment carried out with a Seneca Piper PA34-200T aircraft at the Mielec airport. A dual-frequency dual-system GPS/GLONASS receiver was placed on-board the plane, which made it possible to record GNSS observations, which were then used to calculate the aircraft’s position in CSRS-PPP software. The calculated XYZ position coordinates from the CSRS-PPP software were then used in the weighted mean model’s developed optimization algorithm. The measurement weights are a function of the number of GPS and GLONASS satellites and the inverse of the mean error square. The obtained coordinates of aircraft from the research model were verified with the RTK-OTF solution. As a result of the research, the presented solution’s accuracy is better by 11–87% for the model with a weighting scheme as a function of the inverse of the mean error square. Moreover, using the XYZ position from the RTKLIB program, the research method’s accuracy increases from 45% to 82% for the model with a weighting scheme as a function of the inverse of the square of mean error. The developed method demonstrates high efficiency for improving the performance of GPS and GLONASS solutions for the PPP measurement technology in air navigation.


Sign in / Sign up

Export Citation Format

Share Document