X-Ray Phase-Contrast Tomography for Quantitative Characterisation of Self-Healing Polymers

2010 ◽  
Vol 654-656 ◽  
pp. 2322-2325 ◽  
Author(s):  
Sheridan Mayo ◽  
Andrew Stevenson ◽  
Stephen Wilkins ◽  
Da Chao Gao ◽  
Steven Mookhoek ◽  
...  

X-ray phase-contrast imaging and tomography add an additional dimension to conventional x-ray methods by exploiting the x-ray refraction effects in addition to x-ray absorption in forming an image. This greatly enhances the visibility of edges, voids and boundaries within a sample. It also makes it possible to characterise weakly x-ray absorbing samples which would produce little or no contrast in conventional x-ray imaging. Here we described the application of a laboratory-based x-ray phase-contrast microscope to x-ray micro-tomography of a self-healing polymer system and the quantitative analysis of the resulting three dimensional (3D) datasets to better understand the healing and ageing processes.

2015 ◽  
Vol 22 (6) ◽  
pp. 1531-1539 ◽  
Author(s):  
A. K. Agrawal ◽  
B. Singh ◽  
Y. S. Kashyap ◽  
M. Shukla ◽  
P. S. Sarkar ◽  
...  

A full-field hard X-ray imaging beamline (BL-4) was designed, developed, installed and commissioned recently at the Indus-2 synchrotron radiation source at RRCAT, Indore, India. The bending-magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high-resolution radiography, propagation- and analyzer-based phase contrast imaging, real-time imaging, absorption and phase contrast tomographyetc. First experiments on propagation-based phase contrast imaging and micro-tomography are reported.


2020 ◽  
Vol 27 (2) ◽  
pp. 462-467
Author(s):  
T. S. Argunova ◽  
V. G. Kohn ◽  
J.-H. Lim ◽  
Z. V. Gudkina ◽  
E. D. Nazarova

An investigation of the problems of X-ray imaging of dentinal tubules is presented. Two main points are addressed. In the first part of this paper, the problem of computer simulating tubule images recorded in a coherent synchrotron radiation (SR) beam has been discussed. A phantom material which involved a two-dimensional lattice of the tubules with parameters similar to those of dentin was considered. By a comparative examination of two approximations, it was found that the method of phase-contrast imaging is valid if the number of tubules along the beam is less than 100. Calculated images from a lattice of 50 × 50 tubules are periodic in free space but depend strongly on the distance between the specimen and the detector. In the second part, SR microtomographic experiments with millimetre-sized dentin samples in a partially coherent beam have been described. Tomograms were reconstructed from experimental projections using a technique for incoherent radiation. The main result of this part is the three-dimensional rendering of the directions of the tubules in a volume of the samples. Generation of the directions is possible because a tomogram shows the positions of the tubules. However, a detailed tubule cross-section structure cannot be restored.


2015 ◽  
Vol 51 (2) ◽  
pp. 266-268 ◽  
Author(s):  
David S. Eastwood ◽  
Paul M. Bayley ◽  
Hee Jung Chang ◽  
Oluwadamilola O. Taiwo ◽  
Joan Vila-Comamala ◽  
...  

The morphology of electrodeposited high surface area lithium microstructures was imaged in 3D using synchrotron X-ray phase contrast tomography.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


2004 ◽  
Vol 37 (5) ◽  
pp. 757-765 ◽  
Author(s):  
L. E. Levine ◽  
G. G. Long

A new transmission X-ray imaging technique using ultra-small-angle X-ray scattering (USAXS) as a contrast mechanism is described. USAXS imaging can sometimes provide contrast in cases where radiography and phase-contrast imaging are unsuccessful. Images produced at different scattering vectors highlight different microstructural features within the same sample volume. When used in conjunction with USAXS scans, USAXS imaging provides substantial quantitative and qualitative three-dimensional information on the sizes, shapes and spatial arrangements of the scattering objects. The imaging technique is demonstrated on metal and biological samples.


2015 ◽  
Vol 22 (6) ◽  
pp. 1509-1523 ◽  
Author(s):  
Yakov I. Nesterets ◽  
Timur E. Gureyev ◽  
Sheridan C. Mayo ◽  
Andrew W. Stevenson ◽  
Darren Thompson ◽  
...  

Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.


2018 ◽  
Vol 115 (27) ◽  
pp. 6940-6945 ◽  
Author(s):  
Mareike Töpperwien ◽  
Franziska van der Meer ◽  
Christine Stadelmann ◽  
Tim Salditt

To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal “packing,” we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites.


2007 ◽  
Vol 52 (23) ◽  
pp. 6923-6930 ◽  
Author(s):  
F Pfeiffer ◽  
O Bunk ◽  
C David ◽  
M Bech ◽  
G Le Duc ◽  
...  

2010 ◽  
Vol 6 (6) ◽  
pp. 740-743 ◽  
Author(s):  
Renaud Boistel ◽  
Anthony Herrel ◽  
Gheylen Daghfous ◽  
Paul-Antoine Libourel ◽  
Elodie Boller ◽  
...  

Chamaeleons are well known for their unique suite of morphological adaptations. Whereas most chamaeleons are arboreal and have long tails, which are used during arboreal acrobatic manoeuvres, Malagasy dwarf chamaeleons ( Brookesia ) are small terrestrial lizards with relatively short tails. Like other chamaeleons, Brookesia have grasping feet and use these to hold on to narrow substrates. However, in contrast to other chamaeleons, Brookesia place the tail on the substrate when walking on broad substrates, thus improving stability. Using three-dimensional synchrotron X-ray phase-contrast imaging, we demonstrate a set of unique specializations in the tail associated with the use of the tail during locomotion. Additionally, our imaging demonstrates specializations of the inner ear that may allow these animals to detect small accelerations typical of their slow, terrestrial mode of locomotion. These data suggest that the evolution of a terrestrial lifestyle in Brookesia has gone hand-in-hand with the evolution of a unique mode of locomotion and a suite of morphological adaptations allowing for stable locomotion on a wide array of substrates.


Sign in / Sign up

Export Citation Format

Share Document