Mechanical Properties of Oxide Dispersion Strengthened Pure Titanium Produced by Powder Metallurgy Method

2010 ◽  
Vol 654-656 ◽  
pp. 815-818 ◽  
Author(s):  
Tomohito Yoshimura ◽  
Thotsaphon Thrirujirapaphong ◽  
Hisashi Imai ◽  
Katsuyoshi Kondoh

Pure titanium has good specific properties i.e. low density of 4.5g/cm3, extremely high resistance for corrosion and good elongation. However, its mechanical properties are not enough to be employed as structural parts and components. Accordingly, titanium alloys are often applied to industrial fields due to their high specific strength. However, the application is limited to high-performance products because of their expensive material cost and poor plastic formability at low temperature. In the present study, from a view point of cost reduction, pure titanium was used as a starting material. The materials design by oxide dispersion strengthening (ODS) was basically applied to improve the poor mechanical strength of pure titanium. TiO2 powders were used as reinforcement dispersoids because of their easily obtainable and low material cost. Powder metallurgy (P/M) method was applied to fabricate TiO2 particles reinforced pure titanium composite. Pure titanium powder and TiO2 particles were elementally mixed by conventional mixing process. Their elemental mixture powders were consolidated by using spark plasma sintering (SPS) equipment to serve a high density compact billet. Subsequently, hot extrusion process was applied to the billet to prepare a full density rod specimen. The evaluation of mechanical properties at room temperature showed high tensile strength of 1040 MPa and good elongation of 25 % when the composite included 1.5mass% TiO2 particles.

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Hisashi Imai ◽  
Junko Umeda ◽  
Bunshi Fugetsu

By using pure titanium powder coated with unbundled multiwall carbon nanotubes (MWCNTs) via wet process, powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with the CNTs was prepared by spark plasma sintering (SPS) and subsequently hot extrusion process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


2009 ◽  
Vol 618-619 ◽  
pp. 495-499 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Junko Umeda ◽  
Hisashi Imai ◽  
Bunshi Fugetsu

Powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with multi-wall carbon nanotube (MWCNT) was prepared by spark plasma sintering (SPS) and hot extrusion process, where the powder surface was coated by un-bundled CNTs via wet process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in-situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyser. The mechanical properties of TMC were significantly improved by adding a small amount of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of specimens were analysed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


2011 ◽  
Vol 690 ◽  
pp. 339-342
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Hiroyuki Fukuda ◽  
Junko Umeda

By using light metal (Mg, Al, Ti) powders coated with un-bundled multi-wall carbon nanotubes (MWCNTs) via wet process, powder metallurgy (P/M) light metal matrix composite reinforced with un-bundled nanotubes was prepared by spark plasma sintering (SPS) and subsequently hot extrusion process. The microstructure and mechanical properties of the composites were evaluated. In the case of pure titanium, the distribution of CNTs and in-situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed. In the case of Mg-Al alloys, in-situ formation of Al2MgC2compounds at the interface between CNTs and Mg-matrix occurred and effective for the tensile transfer loading, and resulted in the increment of tensile strength of the composite material.


2015 ◽  
Vol 667 ◽  
pp. 303-307
Author(s):  
Hang Song Yang ◽  
Shao Ju Hao ◽  
Jun Jie Liang

For its light quality, good thermal conductivity, and excellent electricity shielding performance, Magnesium alloy has been used in industry, agricultural and so on, for rare earth elements can improve the mechanical performance of magnesium alloy, the study of powder metallurgy is influence by rare earth magnesium is few at present. so, in this paper, by mixing powder metallurgy method the Y89 element was added in Mg17Al12 magnesium alloy, the influence of Y89 on microstructure, hardness and compression performance of Mg17Al12 magnesium alloy was studied, The experimental results show that when amount of Y89’s addition, the mechanical performance is more then and when is 1.22%, its mechanical performance is best, hardness is 66.7 HV, compressive strength is 113.6 MPa,increased respectively by 19.7% and 29.3% compared the Mg17Al12 magnesium alloy substrate, and the grain refinement effect of Mg17Al12 magnesium alloy is the best at this time.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3140 ◽  
Author(s):  
Zhun Cheng ◽  
Xiaoqiang Li ◽  
Minai Zhang ◽  
Shengguan Qu ◽  
Huiyun Li

In this study, K417G Ni-based superalloy with a 20-mm gap was successfully bonded at 1200 °C using powder metallurgy with a powder mixture. The results indicated that the microstructure and mechanical properties of the as-bonded alloy were highly dependent on the brazing time (15–45 min), mainly due to the precipitation and distribution characteristics of M3B2 boride particles. Specifically, alloy brazed for 30 min exhibited desirable mechanical properties, such as a high tensile ultimate strength of 971 MPa and an elongation at fracture of 6.5% at room temperature, exceeding the balance value (935 MPa) of the base metal. The excellent strength and plasticity were mainly due to coherent strengthening and dispersion strengthening of the in situ spherical and equiaxed M3B2 boride particles in the γ + γ′ matrix. In addition, the disappearance of dendrites and the homogenization of the microstructure are other factors that cannot be excluded. This powder metallurgy technique, which can avoid the eutectic transformation of traditional brazing, provides a new effective method for wide-gap repair of alloy materials.


2011 ◽  
Vol 32 (8-9) ◽  
pp. 4417-4423 ◽  
Author(s):  
Hossein Abdizadeh ◽  
Maziar Ashuri ◽  
Pooyan Tavakoli Moghadam ◽  
Arshia Nouribahadory ◽  
Hamid Reza Baharvandi

Sign in / Sign up

Export Citation Format

Share Document