Synthesis and Characterization of TiO2 Nanoparticles by the Method Pechini

2010 ◽  
Vol 660-661 ◽  
pp. 385-390 ◽  
Author(s):  
João Victor Marques Zoccal ◽  
Fábio Oliveira Arouca ◽  
José Antônio Silveira Gonçalves

In recent years, scientific research showed an increasing interest in the field of nanotechnology, resulting in several techniques for the production of nanoparticles, such as methods of chemical synthesis. Among the various existing methods, the Pechini method has been used to obtain nanoparticles of titanium dioxide (TiO2). Thus, this work aims to synthesize and characterize nanoparticles of TiO2 obtained by this method. The technique constitutes in the reaction between citric acid with titanium isopropoxide, resulting as the product the titanium citrate. With the addition of the ethylene glycol polymerization occurs, resulting in a polymeric resin. At the end of the process, the resin is calcined to remove organic matter, creating nanoparticles of TiO2. The resulting powders were characterized by thermogravimetric analysis (TGA) and thermal differential analysis (DTA), X-ray diffraction, absorption spectrophotometry in the infrared, method of adsorption nitrogen / helium (BET method) and scanning electron microscopy. The results obtained in the characterization techniques showed that the Pechini method is promising in obtaining nanosized TiO2.

2011 ◽  
Vol 197-198 ◽  
pp. 456-459
Author(s):  
Xian Ming Liu ◽  
Wen Liang Gao

Spinel-perovskite multiferroics of NiFe2O4/BiFeO3 nanoparticles were prepared by modified Pechini method. The structure and morphology of the composites were examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the composites consisted of spinel NiFe2O4 and perovskite BiFeO3 after annealed at 700°C for 2h, and the particle size ranges from 40 to 100nm. VSM and ME results indicated that the nanocomposites exhibited both tuning magnetic properties and a ME effect. The ME effect of the nanocomposites strongly depended on the magnetic bias and magnetic field frequency.


2005 ◽  
Vol 03 (2) ◽  
pp. 24-29
Author(s):  
P.M. PIMENTEL ◽  
A.M.G. PEDROSA ◽  
H.K.S. SOUZA ◽  
C.N.S. JÚNIOR ◽  
R.C.A. PINTO ◽  
...  

Spinel oxides with the composition ZnCo2O4 and ZnCo2O4:Eu3+ have been synthesized by the Pechini method and characterized by X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. IR spectroscopy revealed the presence of n1 and n2 bands, typical of spinel structures. The formation of monophase cubic spinel structure was confirmed by X-ray diffraction patterns. Extra lines corresponding to other phase has been observed in the powders calcined at 900 ºC. The results showed the extremely lower synthesis temperature than those presents in conventional methods.


Cerâmica ◽  
2007 ◽  
Vol 53 (328) ◽  
pp. 422-447
Author(s):  
F. C. D. Lemos ◽  
D. M. A. Melo ◽  
P. S. de Lima ◽  
C. A. Paskocimas ◽  
E. Longo ◽  
...  

Rare earth modified lead titanate powders Pb1-xRExTiO3 (REPT), x = 0.01, 0.05, 0.07 and RE = Yb, Y, were prepared by the Pechini method. The materials were calcined under flowing oxygen at different temperatures from 300 to 700 ºC. Nanostructured REPT were investigated using X-ray diffraction, scanning electron microscopy and surface area analysis (BET). The results suggest that the modifier cation incorporated into the system has notable influence in the microstructure and a notable decrease in the crystallite sizes.


2014 ◽  
Vol 775-776 ◽  
pp. 97-101
Author(s):  
Loanda Raquel Cumba ◽  
U.O. Bicalho ◽  
D.R. Carmo

This paper describes the preparation and complementary characterization of a composite formed from the activation of titanium isopropoxide by phosphoric acid and deionized water (TiP).Techniques such as, X-ray diffraction (XRD), Raman , electronic (UV-vis) and Scanning electron microscopies (SEM) were used for characterization of this new composite formed. In the X-ray diffractogram of TIP was observed four intense peaks. A strong absorption was observed in the region 362-445 nm. The scanning electron microscopy of TiP, shows that the prepared material consists mostly of a cluster of spherical particles with diameters ranging from 2.35 to 2.60 μm.


1998 ◽  
Vol 13 (9) ◽  
pp. 2602-2609 ◽  
Author(s):  
Yun-Hong Zhang ◽  
Chak K. Chan ◽  
John F. Porter ◽  
Wei Guo

Micro-Raman analysis was used to study the structure of TiO2 powders produced at low (260 °C) and high (600–900 °C) temperatures by vapor hydrolysis of titanium tetraisopropoxide (TTIP). Spatial inhomogeneity was discovered after the amorphous TiO2 powders produced at low temperature were calcined at 700, 800, and 900 °C for 3 h. The TiO2 powders produced at high temperatures (from 600 to 900 °C) were found to be spatially homogeneous and predominately anatase in structure. Small amounts of rutile and brookite are found for powders produced at 700, 800, and 900 °C after calcination at 600 °C for 3 h. The rutile and brookite impurities are believed to be concentrated on the surface of anatase based on a comparison of results of Raman and x-ray diffraction studies.


2006 ◽  
Vol 42 (12) ◽  
pp. 1348-1351 ◽  
Author(s):  
B. S. Barros ◽  
R. Barbosa ◽  
N. R. dos Santos ◽  
T. S. Barros ◽  
M. A. Souza

2014 ◽  
Vol 798-799 ◽  
pp. 100-105 ◽  
Author(s):  
Jocielys Jovelino Rodrigues ◽  
Liliane Andrade Lima ◽  
Gustavo Medeiros de Paula ◽  
Meiry Glaúcia Freire Rodrigues

A series of mesoporous materials have been synthesized in an acid medium, with various structures, such as SBA-15. These materials have many properties which make them potential catalysts. Among these we highlight their high surface areas and pore walls relatively thick, resulting in a greater hydrothermal stability. This work aims at the synthesis and characterization of molecular sieve SBA-15 with molar composition: 1.0 TEOS: 0.017 P123: 5.7 HCl: 193 H2O and Co/SBA-15 and catalysts for the reaction of Ru/Co/SBA-15 Fischer Tropsch process. The materials were characterized by the techniques of X-ray diffraction (XRD), chemical analysis by X-ray spectrometry, energy dispersive (EDX) and Nitrogen adsorption (BET method). X-ray diffraction showed that the calcined cobalt catalyst did not modify the structure of SBA-15 and that Co was present under the form of Co3O4 in the catalyst. The addition of cobalt in the SBA-15 decreased the specific superficial area of the molecular sieve.


1995 ◽  
Vol 10 (1) ◽  
pp. 40-43 ◽  
Author(s):  
Cem Basceri ◽  
A. Cuneyt Tas ◽  
Muharrem Timucin

New solid solution phases in the (Y,Ca)(Cr,Co)O3 system have been synthesized and characterized by powder X-ray diffraction. The selected compositions in this system were prepared by the modified Pechini method. Powder-diffraction patterns were prepared.


2013 ◽  
Vol 289 ◽  
pp. 45-51 ◽  
Author(s):  
Guan Rong Tang ◽  
Jing Chen

In this paper, Nanostructured Titania (NST) was fabricated by aging titanium film in hydrogen peroxide solution. NST was analyzed and characterized using scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), nano-indentation method and the BET method. Results showed that NST was porous TiO2 with pore diameter of 90-133 nm, hardness of 1.35Gpa, and specific surface area of 37.26 m2/g. Gas sensors using NST film as sensitive material were presented in this paper too. Electrodes were deposited upon NST patterns to create electrical connections. Gas sensors with a simple package were successfully fabricated.


2012 ◽  
Vol 727-728 ◽  
pp. 1393-1397 ◽  
Author(s):  
M.A. Ribeiro ◽  
Laédna Souto Neiva ◽  
Ruth Herta Goldsmith Aliaga Kiminami ◽  
J.B.L. de Oliveira ◽  
L. Gama

Because of the unique properties that the system TiO2-ZrO2 has, this system has attracted great interest in catalytic circles. In general, the TiO2-ZrO2 oxides composites have a greater surface area and a stronger acidity when compared to the single oxide and they are used as catalysts supports for many catalytic reactions. This work is to evaluate the effect of calcined temperature in structural and morphological characteristics of Ti1-xZrxO2nanopowders obtained by Pechini method. For this study, the doping value was 0.25 moles of Zr. The powders were calcined at temperature of 500 to 900°C for one hour. The powders were characterized by XRD, SEM and BET. The X-ray diffraction showed that the powders present a TiO2anatase phase and another of ZrO2tetragonal. The crystallite size ranged from 4.8 to 14.6 nm for the temperature of 500 to 900°C, respectively. The analysis of scanning electron microscopy showed soft homogeneous agglomerates with particles around 100 nm. The main particles sizes by BET were ranged from 10 to 20 nm, showing that the synthesis is effective to obtain nanometric powders.


Sign in / Sign up

Export Citation Format

Share Document