Synthesis and Characterization of Molecular Sieve SBA-15 and Catalysts Co/SBA-15 and Ru/Co/SBA-15

2014 ◽  
Vol 798-799 ◽  
pp. 100-105 ◽  
Author(s):  
Jocielys Jovelino Rodrigues ◽  
Liliane Andrade Lima ◽  
Gustavo Medeiros de Paula ◽  
Meiry Glaúcia Freire Rodrigues

A series of mesoporous materials have been synthesized in an acid medium, with various structures, such as SBA-15. These materials have many properties which make them potential catalysts. Among these we highlight their high surface areas and pore walls relatively thick, resulting in a greater hydrothermal stability. This work aims at the synthesis and characterization of molecular sieve SBA-15 with molar composition: 1.0 TEOS: 0.017 P123: 5.7 HCl: 193 H2O and Co/SBA-15 and catalysts for the reaction of Ru/Co/SBA-15 Fischer Tropsch process. The materials were characterized by the techniques of X-ray diffraction (XRD), chemical analysis by X-ray spectrometry, energy dispersive (EDX) and Nitrogen adsorption (BET method). X-ray diffraction showed that the calcined cobalt catalyst did not modify the structure of SBA-15 and that Co was present under the form of Co3O4 in the catalyst. The addition of cobalt in the SBA-15 decreased the specific superficial area of the molecular sieve.

2010 ◽  
Vol 660-661 ◽  
pp. 561-566
Author(s):  
L.A. Lima ◽  
B.V. Sousa ◽  
Meiry Glaúcia Freire Rodrigues

Catalysts supported on SBA-15 were obtained by wet impregnation using aqueous solution of cobalt nitrate, where different contents of cobalt (5 wt% and 10 wt%) were prepared. The molecular sieve SBA-15 was synthesized using tetra ethyl ortho silicate (TEOS) as silicate source, and triblock copolymer, poly-(ethylene oxide)-poly (propylene oxide)-poly-(ethylene oxide) PEO-PPO-PEO as the organic structure directing agent. These materials were characterized by X-ray diffraction (XRD), X-ray energy dispersion spectrophotometer (EDX) and Nitrogen adsorption–desorption isotherms (BET). The results from the XRD showed that the molecular sieve mesoporous (SBA-15) was identified by X-ray diffraction, especially from the (210) and (300) peaks, which represent a typical spectrum for the SBA-15. Characterization of catalysts by Nitrogen adsorption–desorption isotherms (BET) made it possible to verify the the samples had been of type IV with hysteresis of corresponding the H2 type the porous materials.


2014 ◽  
Vol 13 (2) ◽  
pp. 148-161 ◽  
Author(s):  
Pavel Janoš ◽  
Jakub Ederer ◽  
Marek Došek

Abstract Reactive forms of cerium oxide were prepared by a thermal decomposition of various precursors, namely carbonates, oxalates and citrates, commercially available nanocrystalline cerium oxide (nanoceria) was involved in the study for comparison. Scanning electron microscopy (SEM) and x-ray diffraction analysis (XRD) were used to examine the morphology and crystallinity of the samples, respectively, whereas the Brunauer-Emmett-Teller (BET) method of nitrogen adsorption was used to determine surface areas. Interactions of cerium oxide with some phosphorus-containing compounds were investigated. Some of the examined samples, especially those prepared by annealing from carbonate precursors, exhibited an outstanding ability to destroy highly toxic organophosphates, such as pesticides (parathion methyl), or nerve agents (soman, VX). There were identified some relations between the degradation efficiency of cerium oxides and their crystallinity. It was also shown that cerium oxide is able to destroy one of widely used flame retardants - triphenyl phosphate. A phosphatase-mimetic activity of various cerium oxides was examined with the aid of a standardized phosphatase test.


2010 ◽  
Vol 654-656 ◽  
pp. 2277-2280
Author(s):  
Xi Long ◽  
Wen Chen ◽  
Shao Jiang Chen ◽  
Chun Xia Zhao

Mesoporous carbon with MoO3 loading (MoO3/CMK-3) was obtained via ultrasonic assembly with CMK-3 as the host material and MoO3 as the guest material which was yield from MoO3ּpH2O2ּqH2O sol precursor. The microstructures of such MoO3/CMK-3 composites were characterized by X-ray diffraction (XRD), nitrogen adsorption and desorption, X-ray photoelectron spectra (XPS), Fourier-transform infrared (FTIR) and transmission electron microscopy (TEM). The results show that the method of ultrasonic assembly was efficient to highly disperse MoO3 nanoparticales into the channels of mesoporous carbon.


2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Ninh Vu The ◽  
Loc Dinh Xuan ◽  
Tai Tran Anh

The single phase of Mn0.5Fe2.5O4 spinel crystals was prepared by the micro-emulsion method with the oil phase is DGDE (diethylene glycol diethyl ether). The characteristics of the materials have been determined by the X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM) and Brunaure-Emmet-Teller (BET) nitrogen adsorption and desorption, Vibration sampling magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR). The results showed that the single phase of Fe0.5Mn0.5Fe2O4 crystalline was formed due to the substitution of Fe by Mn in the Fe3O4 crystal lattice and single phase spinel crystal is formed with the size of 6.7 nm, specific surface area ≈ 193 m2.g-1, the saturation magnetization reaches ≈ 27 emu.g-1.


2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Ninh Vu The ◽  
Loc Dinh Xuan ◽  
Tai Tran Anh

The single phase of Mn0.5Fe2.5O4 spinel crystals was prepared by the micro-emulsion method with the oil phase is DGDE (diethylene glycol diethyl ether). The characteristics of the materials have been determined by the X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM) and Brunaure-Emmet-Teller (BET) nitrogen adsorption and desorption, Vibration sampling magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR). The results showed that the single phase of Fe0.5Mn0.5Fe2O4 crystalline was formed due to the substitution of Fe by Mn in the Fe3O4 crystal lattice and single phase spinel crystal is formed with the size of 6.7 nm, specific surface area ≈ 193 m2.g-1, the saturation magnetization reaches ≈ 27 emu.g-1.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2011 ◽  
Vol 197-198 ◽  
pp. 456-459
Author(s):  
Xian Ming Liu ◽  
Wen Liang Gao

Spinel-perovskite multiferroics of NiFe2O4/BiFeO3 nanoparticles were prepared by modified Pechini method. The structure and morphology of the composites were examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the composites consisted of spinel NiFe2O4 and perovskite BiFeO3 after annealed at 700°C for 2h, and the particle size ranges from 40 to 100nm. VSM and ME results indicated that the nanocomposites exhibited both tuning magnetic properties and a ME effect. The ME effect of the nanocomposites strongly depended on the magnetic bias and magnetic field frequency.


Sign in / Sign up

Export Citation Format

Share Document