Synthesis of α-Alumina Powder Obtained from Irradiated Pseudoboehmites

2010 ◽  
Vol 660-661 ◽  
pp. 928-935 ◽  
Author(s):  
Antonio H. Munhoz ◽  
Renato Meneghetti Peres ◽  
Sonia B. Faldini ◽  
Leonardo Gondim Andrade e Silva ◽  
Amanda Abati Aguiar ◽  
...  

The alumina powder was obtained through a technique based on firing irradiated pseudoboehmites powder to study the radiation effects in the alumina properties. The electron beam radiation effect in a pseudoboehmite produced by sol-gel synthesis was investigated, using aluminum chloride and ammonium hydroxide as precursors. The addition of poly(vinyl alcohol) ([C2H3OH]n) solution (8 wt% in water) was also analyzed. The aluminum chloride solution was mixed with the polyvinyl alcohol and the mixture was dropped into an ammonium hydroxide solution. The work presents the effects of pseudoboehmite radiation in the structure of alumina. The alumina was obtained by pseudoboehmite calcinations. The milky-white colloidal pseudoboehmite precipitate obtained by sol-gel method was filtered, washed with distilled water, dried at 70°C, and powdered in a mortar. The sample acquired was calcined 4 hours at 1100oC, and after that X-ray powder diffraction was performed. The well defined α-alumina crystal was obtained from 1100oC treatment for some samples. The X-ray powder diffraction data shows that in some irradiated samples calcined at 1100o C for four hours presented θ-alumina and -alumina. The powder dried at 70o C was also examined by thermal analysis. The Thermo Gravimetric Analysis (TG) and Differential Thermal analysis (DTA) were used to evaluate mass loss and the pseudoboehmite endothermic and exothermic transformations. The samples were analyzed through scanning electron microscopy technique

2006 ◽  
Vol 45 ◽  
pp. 260-265 ◽  
Author(s):  
Antônio Hortêncio Munhoz Jr. ◽  
Leila Figueiredo de Miranda ◽  
G.N. Uehara

A pseudoboehmite was obtained by sol-gel synthesis using aluminum nitrate as precursor. It was used a 2n full factorial design for studying the effect of the temperature of synthesis, the concentration of ammonium hydroxide, and the radiation dose in the product of sol-gel synthesis. The product of the synthesis was analyzed by scanning electron microscopy, x-ray diffraction of the product (after firing the pseudoboehmite at different temperatures), and it was also analyzed the temperature of endothermic and exothermic transformations using the thermo gravimetric analysis (TG) and differential scanning calorimetry (DSC). The X-ray diffraction data show that α-alumina was obtained at 1100o C.


2011 ◽  
Vol 217-218 ◽  
pp. 163-168 ◽  
Author(s):  
Lin Xin Tong ◽  
Jin Hong Li ◽  
Jian Cao

A series of gels with 3Al2O3•2SiO2 were prepared by Sol-gel method and heated at several temperatures for 2 h to synthesize Ti, Fe-doped mullite. The powers were characterized by differential thermal analysis (DSC-TG) and X-ray powder diffraction (XRD). Phase separation was promoted by doping both TiO2 and Fe2O3; with increasing the amount of dopant ions the formation temperature of Si-Al spinel decreased and the formation temperature of mullite increased by TiO2 doping but decreased by Fe2O3 doping. The formation temperature of pure mullite was about 1250-1350 °C.


2015 ◽  
Vol 645-646 ◽  
pp. 368-374
Author(s):  
Yu Long Hu ◽  
Xiao Dong Zhang ◽  
Hong Fang Liu ◽  
Xing Peng Guo

N-doped TiO2 nanoparticle powders were prepared efficiently by the sol-gel method using triethylamine and ammonium hydroxide as composite N precursor. The as-prepared N-doped TiO2 precursor powders were calcined at 300°C in air for 3 h and subsequently annealed at 300°C in air for 2.5 h. The samples were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy. The visible light photocatalytic activities of as-prepared samples were evaluated by photodecomposition of methyl orange (MO). The results show that the as-prepared samples have high visible light photocatalytic activities. Triethylamine produces the N-species doped in TiO2 lattice responsible for the high visible light photocatalytic activity. Ammonium hydroxide makes the gel of the TiO2 nanoparticles nitrided by triethylamine gelate further and facilitates significantly the centrifugation of the gel. An annealing treatment can eliminate effectively the outer N species caused by ammonium hydroxide and the surface organic residues, improve effectively crystallinity, and retain the N species caused by triethylamine.


2014 ◽  
Vol 87 ◽  
pp. 126-131
Author(s):  
Stanislav Kurajica ◽  
Emilija Tkalčec ◽  
Vilko Mandić ◽  
Iva Lozić ◽  
Jörg Schmauch

Mullite-gahnite composites with different phase-proportions were prepared using sol-gel process. Crystallization path was determined using differential thermal analysis (DTA). X-ray powder diffraction (XRD) was used to study the crystal phases development. The course of the thermal reactions is dominated by the intermediate formation of two spinel phases. The former phase was attributed to gahnite, while the latter to Al-Si spinel. Zn loading decreases amounts of mullite and α-alumina, while increases gahnite and amorphous phase. The observed microstructure of sintered bodies is characterized by fine gahnite particles distributed among larger mullite grains, which is highly favourable for ceramics with high mechanical requirements.


2015 ◽  
Vol 1104 ◽  
pp. 3-8 ◽  
Author(s):  
Tong Qing Zhou ◽  
Ting Chen ◽  
Wei Hui Jiang ◽  
Jian Min Liu ◽  
Xiao Jun Zhang ◽  
...  

Corundum structurealumina (α-Al2O3) powders were prepared via a non-hydrolytic sol-gel (NHSG) method using aluminum as raw material, ethanol as solvent, and iodine as catalyst. X-ray diffraction (XRD), differential thermal analysis (DTA), thermo gravimetric analysis (TG) were used to characterize the crystal phase of the products, while scanning electron microscopy (SEM) and transmission electron microscope (TEM) were employed to analyze the morphology. The results indicated that γ-Al2O3 was completely changed to α-Al2O3 at 1100 o C with a bit of aggregation. When 3 wt.% polyethylene glycol 600 (PEG 600) was introduced on the NHSG process, the dispersion was improved and the particle size decreased to100 nm.


2006 ◽  
Vol 510-511 ◽  
pp. 102-105 ◽  
Author(s):  
Lorena L. Garza-Tovar ◽  
Leticia M. Torres-Martínez

Ceramic compound with the formula BaLi2Ti6O14 was prepared by sol-gel method at basic conditions, using ammonium hydroxide as hydrolysis catalyst. Some portions of gel sample obtained were heat treated at 200, 400, 600, and 800°C. Samples were characterized by X-ray diffraction (XRD), thermal analysis (DTA-TGA), UV-Vis and FTIR. Crystalline phase was formed when a sample was treated at 800°C for 6h. This material has been previously synthesized by solid state reaction using temperatures as high as 900-1150°C for 2 to 10 days. The crystal structure of BaLi2Ti6O14 is similar to that corresponding strontium containing phase, SrLi2Ti6O14, which has been reported as catalyst for oxidative dehydrogenation of lower alkanes.


2019 ◽  
Vol 97 ◽  
pp. 02030
Author(s):  
Yuri Ivaschenko ◽  
Maria Kochergina ◽  
Irina Pavlova

Modern methods allow to improve the functional properties of silicate-sodium compositions. Increased water resistance primarily will allow their use in construction. The article presents the results of the study of modified silicate-sodium compositions by X-ray phase analysis, differential thermal analysis, thermo-gravimetric analysis. An organic zinc-containing compound, zinc acetate dihydrate, which is introduced into the binder in the form of a concentrated aqueous fluid, was used as a modifier. Using X-ray analysis, it was shown that in the hardening system “silicate-sodium binder an aqueous fluid of zinc acetate” in the temperature range 110-450°C various forms of hydroxides, silicates and zinc silicates are formed. In addition, at T = 450°C, only “traces” of ZnO were detected, and the crystalline phase of the hardly soluble zinc metasilicate ZnSiO3 prevailed. The results of the study of modified samples by thermal analysis indicate the processes of thermal decomposition of the modifying additive in the binder system and indicate the possible formation of a new crystalline phase (ZnSiO3) at a temperature of 440-450°C. It was revealed that temperature treatment of modified samples in the range of 440-450°C leads to a more significant increase in water resistance (by 25-28%) than during low-temperature curing (by 20-23%).


2015 ◽  
Vol 365 ◽  
pp. 226-231 ◽  
Author(s):  
Antonio Hortêncio Munhoz ◽  
T.J. Masson ◽  
Leila Figueiredo de Miranda ◽  
A. Cabral Neto ◽  
Raphael Cons Andrades ◽  
...  

Different samples of pseudoboehmite were synthesized through the sol-gel process, using aluminum nitrate as precursor. The influence of variables on the product of the synthesis of pseudoboehmite was studied. The variables were the ageing temperature (25 and 130°C), addition or not of polyvinyl alcohol to the precursor solution and the ageing time of the PB. The pH adjustment of the precursor solution was made by using ammonium carbonate. The pseudoboehmites, which were obtained on different conditions, were then characterized by X-ray diffraction, thermal analysis (Differential Thermal Analysis and Thermo Gravimetric Analysis) and the desorption-absorption curves were obtained as well, in order to measure the pore volume of the samples and the specific surface area measurements through the BET method. Finally, the results were analyzed through an experimental factorial planning, which showed that high specific surface area pseudoboehmite was obtained.


2020 ◽  
Vol 9 (1) ◽  
pp. 17-24
Author(s):  
Katarina Mužina ◽  
Marija Tkalčević ◽  
Filip Brleković ◽  
Ivana Katarina Munda ◽  
Vilko Mandić ◽  
...  

Perovskites are an important group of ceramic materials with a structural formula ABO3 and wide array of potential applications in electronics, superconductors, catalysis, etc. CaTiO3, by which the whole group was named for, is particularly significant due to its use in catalysis, but its photocatalytic activity is limited by a large band gap value (~3.5 eV). A possible solution is the substitution of A and B cations with foreign cations which causes the alteration of properties, including photocatalytic efficiency. The aim of this work was the sol-gel synthesis of lithium and cerium codoped CaTiO3, characterization of the prepared gel and ceramics obtained by its thermal treatment. Samples of codoped perovskite, Ca1-xLixCexTiO3, where x = 0, 0.01, 0.02, 0.03 and 0.04, were prepared and characterized using powder X–ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), differential thermal and thermo-gravimetric analysis (DTA-TGA), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Photocatalytic activity was evaluated through the study of methylene blue photocatalytic degradation. XRD analysis showed that the prepared samples consisted of calcium nitrate and titanium chelate. In accordance with the established thermal evolution path, all samples were thermally treated at 500 °C for 2 hours. Beside perovskite, Ca2Ti2O6 appeared as a secondary phase in all thermally treated samples. SEM analysis of thermally treated samples showed the presence of agglomerates of irregular morphology and the decrease of primary particles size with the increase of dopants concentration. The sample with x=0.04 showed an increased photocatalytic activity.


2019 ◽  
Vol 70 (6) ◽  
pp. 2044-2047
Author(s):  
Alexandru-Horatiu Marincas ◽  
Firuta Goga ◽  
Roxana Dudric ◽  
Crina Suciu ◽  
Alexandra Avram ◽  
...  

In the present paper, nanosized La0.9Sr0.1MnO3 particles were synthesized via a facile modified sol-gel route using two cheap and environmentally friendly organic chemicals, namely sucrose and pectin. The obtained powders were characterized by thermo gravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and magnetic measurements. The optimal temperature for obtaining nanosized particles was determined as 1000�C and 1h dwell time was enough to obtain crystalline nanoparticles. Magnetic properties of samples calcined with different calcination period were analyzed and both samples shown a transition temperature around 274 K.


Sign in / Sign up

Export Citation Format

Share Document