Numerical Simulation Analysis of Temperature Field on Silicon Carbide Synthesis Furnace

2011 ◽  
Vol 686 ◽  
pp. 494-500 ◽  
Author(s):  
Yong Gang Li ◽  
Yang Dong Hu ◽  
Lian Ying Wu ◽  
Hong Li

Based on heat percolation theory and thermal coefficient equation of various layer-compositors, the effective thermal conductivity of silicone carbide(SiC)synthetic material was obtained, and the effective heat capacity under the complicated thermal effect in the process of raising temperature figured out in the present investigation. Based on the experimental results and using the finite element numerical model of nonlinear dynamic heat transfer process, the temperature field in SiC synthesis furnace was simulated by open source finite element software-FECsoft. And the dynamic laws of temperature distribution and thermal gradient of the furnace, the relation between the furnace core’s temperature and the energy consumption and output were obtained. Based on the above analysis, some measures to save energy and increasing output of the silicon carbide synthesis furnace were proposed in this paper.

2014 ◽  
Vol 614 ◽  
pp. 124-127
Author(s):  
Meng Kai Lin ◽  
Hai Lian Li

Taking the concrete pouring for a passenger station’s pile cap as the research background, the paper establishes a model of pile cap’s hydration heat, by using the finite element software MIDAS. The paper also studies the main parameters and the temperature field theory which affect the hydration heat. It indicates that the pipe cooling method can significantly reduce the temperature difference between the inside and the outside when pouring massive concretes, and it is an effective way to prevent the generation of cracks.


2012 ◽  
Vol 557-559 ◽  
pp. 835-838
Author(s):  
Yong Gang Li ◽  
Yang Dong Hu ◽  
Lian Ying Wu ◽  
Chun Li Yu

The effective thermal conductivity coefficient of silicon carbide (SiC) synthesis materials and graphitization furnace insulation material were obtained by applying heat percolation theory and thermal coefficient equation of various layer-compositors. This paper proposed a further numerical analysis on the temperature distribution of SiC furnace, lengthwise graphitization (LWG) furnace and Co-production furnace by open source finite element software FEPG. The results show that the Co-production furnace can produce SiC after finishing graphitization production and Co-production furnace’s energy consumption subtract energy consumption of LWG furnace, SiC production energy consumption of Co-production furnace is half and SiC yield of Co-production furnace is 57-73 percent of same type of SiC furnace. Besides, applying Co-production process could reduce the exhaust of whole LWG furnace.


2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


2014 ◽  
Vol 941-944 ◽  
pp. 1890-1894
Author(s):  
Guang Zheng Luo ◽  
Xin Liu ◽  
Ying Zhi ◽  
Xiang Hua Liu

The temperature field of continuous casting billet (CC-billet) is important to carry out the research on direct rolling of free-heating (DROF). The solidification and the heat transfer process of CC-billet from crystallizer to cutting point were studied by finite element method (FEM).The casting speed was improved in order to get reasonable temperature field during DROF.


2013 ◽  
Vol 712-715 ◽  
pp. 1209-1212 ◽  
Author(s):  
Ke Zhang ◽  
Xiang Nan Ma ◽  
Li Xiu Zhang ◽  
Wen Da Yu ◽  
Yu Hou Wu

The article has analyzed the changes of temperature of different materials of the spindle, and considered 170SD30 Ceramic Motorized Spindle and the same model Metal Motorized Spindle as the research objects, analyzed the inside heat source and heat transfer mechanism of the high-speed motorized spindle; used finite element software to set up the model of the motorized spindle, and did simulation and analysis. Verified by simulation, heat transfer rate of ceramic materials is slower than the metallic materials, in actual operation of the process, due to different materials have different heat transfer rate, so the temperature distribution of the different materials of motorized spindle are different. This conclusion provides the basis to solve motorized spindle temperature field distribution.


2013 ◽  
Vol 644 ◽  
pp. 358-361
Author(s):  
Dong Yu Ji

This paper adopts general finite element software to carry out three-dimensional finite element simulation analysis for Huizeli reinforced concrete rectangular-sectioned aqueduct. Considering four combination cases in aqueduct’s construction and operating process, researching variation laws of the aqueduct’s stress and displacement. Analysis results show that design scheme of Huizeli reinforced concrete rectangular-sectioned aqueduct is reasonable, it can meet design requirements. Analysis results provide some theory references for design of reinforced concrete rectangular-sectioned aqueduct.


2020 ◽  
pp. 2150002
Author(s):  
XIAOLI LI ◽  
LI CHEN ◽  
XIAOYAN LIU ◽  
YU ZHANG ◽  
LIFU CUI

The geological environment along a buried pipeline in permafrost regions is complex, where differential frost heave often occurs. To understand the changes in the stress behavior of pipeline structures caused by corrosion while laying them in permafrost regions, we established a thermo-mechanical coupling model of buried pipeline with corrosion defects by using finite element software. Numerical simulation analysis of buried pipeline was conducted. The effects of the frost heave length, the length of the transition section, the corrosion depth, and the corrosion length on the stress displacement were obtained. These analyses showed that the stresses and displacements of the pipeline with corrosion defects in permafrost regions can be simulated by using the finite element software numerical simulation method. Afterward, the corrosion resistances of pipelines with different corrosion lengths and depths were investigated via an electrochemical testing method. These results can provide some useful insights into the possible mechanical state of buried pipeline with regard to their design and construction, as well as some useful theoretical references for simulating real-time monitoring and safety analysis for their operation in permafrost regions.


2012 ◽  
Vol 170-173 ◽  
pp. 3145-3152
Author(s):  
Ji Liang Liu ◽  
Ming Jin Chu ◽  
Shu Dong Xu ◽  
Ying Ying Yin

The author performs simulation analysis on construction process of roofing prestressed concrete beam of comprehensive service center in Beijing Institute of Civil Engineering and Architecture by finite element software Midas/Gen, so as to determine the monitoring programme according to the analysis results. The monitoring results indicate that the structure is safe; the theoretical value of simulation analysis is well matched with actual monitoring value, which means that the finite element model of construction process of roofing prestressed concrete beam is correct, the simulation method is feasible and the construction process is reasonable. It has important reference value for construction and monitoring of subsequent similar projects.


2012 ◽  
Vol 178-181 ◽  
pp. 2006-2012
Author(s):  
Yu Dong Nie ◽  
Wei Zhang ◽  
Zong Lin Wang

Based on the Nenjiang Bridge located in the Qi-Gan expressway and using the finite element software ANSYS, we analysis the influences of solar radiation, free air temperature, inside temperature, wind speed, thermal conductivity of concrete, section height, flange plate length and bridge pavement on the temperature field of PC box-girder in this paper. And the solar radiation, thermal conductivity of concrete and bridge pavement is presented as the leading factors for the temperature field of PC box-girder.


Sign in / Sign up

Export Citation Format

Share Document